Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables
The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitati...
Uloženo v:
| Vydáno v: | 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.09.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitation, a dual-state-driven evolutionary optimization (called DSDEO), integrating a surrogate-assisted mixed-variable evolutionary optimization stage (MVEOS) and a surrogate-assisted continuous-variable evolutionary optimization stage (CVEOS), is proposed in this paper. Specifically, MVEOS employs global and local search to enhance the exploration and exploitation of the mixed-variable space. Global and local searches are alternately executed if one search fails to yield a better solution. CVEOS utilizes a continuous-improvement strategy to refine the continuous variables of the best solution obtained so far. Experimental results demonstrate the advantages of DSDEO compared to some state-of-the-art SAEAs on many benchmark problems. |
|---|---|
| AbstractList | The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitation, a dual-state-driven evolutionary optimization (called DSDEO), integrating a surrogate-assisted mixed-variable evolutionary optimization stage (MVEOS) and a surrogate-assisted continuous-variable evolutionary optimization stage (CVEOS), is proposed in this paper. Specifically, MVEOS employs global and local search to enhance the exploration and exploitation of the mixed-variable space. Global and local searches are alternately executed if one search fails to yield a better solution. CVEOS utilizes a continuous-improvement strategy to refine the continuous variables of the best solution obtained so far. Experimental results demonstrate the advantages of DSDEO compared to some state-of-the-art SAEAs on many benchmark problems. |
| Author | Lin, Kangnian Xie, Lindong Wang, Zhenkun Li, Genghui |
| Author_xml | – sequence: 1 givenname: Lindong surname: Xie fullname: Xie, Lindong email: 12132679@mail.sustech.edu.cn organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Shenzhen,P.R. China – sequence: 2 givenname: Genghui surname: Li fullname: Li, Genghui email: genghuili2-c@my.cityu.edu.hk organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Shenzhen,P.R. China – sequence: 3 givenname: Kangnian surname: Lin fullname: Lin, Kangnian email: 12132672@mail.sustech.edu.cn organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Shenzhen,P.R. China – sequence: 4 givenname: Zhenkun surname: Wang fullname: Wang, Zhenkun email: wangzhenkun90@gmail.com organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,P.R. China |
| BookMark | eNpVkM9Kw0AYxFfQg9a-geC-QOr-STb5jpJUKxQqVL2WzeaLLqS7YbOp1qc3oh48DcP8GJi5IKfOOyTkmrMF5wxuqk25VQzyfCGYkAvOBKQFpCdkDjkUMmMSZCb4OTlWo-6SbdQRkyrYAzq6PPhujNY7HY5000e7t5_629PWB7r86NENE_g_egy-7nA_0Hcb32jpXbRu9ONAtWtoObW_-mCN7uiLDlZP6HBJzlrdDTj_1Rl5vls-latkvbl_KG_XieUcYiK5agzTIBvDlUgNa0HIWmHBMt0qUxtocoFFYURaCzQZplAbg5xLmYFqpJyRq59ei4i7Ptj9tGv394j8AvH9Xss |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/DOCS60977.2023.10294894 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore (Online service) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore (Online service) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350393521 |
| EndPage | 7 |
| ExternalDocumentID | 10294894 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62206120,62106096 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-316dc0a93dc1624c0f923b6e805af6cbc9d72e88c24b2ec5e49bcce1133596d33 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 10 09:28:11 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-316dc0a93dc1624c0f923b6e805af6cbc9d72e88c24b2ec5e49bcce1133596d33 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10294894 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-22 |
| PublicationDateYYYYMMDD | 2023-09-22 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) |
| PublicationTitleAbbrev | DOCS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8527579 |
| Snippet | The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Benchmark testing Complex systems continuous and categorical variables dual-state-driven Evolutionary computation expensive mixed-variable optimization Measurement Prediction algorithms Predictive models Search problems Surrogate-assisted evolutionary algorithm |
| Title | Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables |
| URI | https://ieeexplore.ieee.org/document/10294894 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27asMwFBVN6NCpLU3pGw1dnVqSLfvOTkKnJNAH2YKeEGidYseB_H0l2WnJ0KGbkQ0GXT3Ole45B6FHB2GttDyJSKY9JUeySKRGR0pYEFaBYcwGs4lsOs0XC5h3ZPXAhTHGhOIzM_SP4S5fr1Xjj8rcDKeQ5JD0UC_LeEvW6mq2SAxPo1nxwmMHaIbeE3y4__rANyVsG5PTf_7wDA1-CXh4_rO1nKMjU16g3agRH1FAh9Go8qsUHm-7kSOqHZ652f_Z0Sqxw6LYyxiH8vTDV_PWQ6bG_gwWe3mqVdmsmxqLUuPCK0e0uiH43eXRnllVD9DbZPxaPEedc0K0IgQ2bmHlWsUCmFaE00TF1uE4yU0ep8JyJRXojJo8VzSR1KjUJCCVMsQlrClwzdgl6pfr0lwhnDIbE8NdqAkknNlcZjmkQC24VFBm6TUa-H5bfrXiGMt9l9380X6LTnx0fMkFpXeov6kac4-O1XazqquHENJvL-Wnwg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAGB20CnpSseLuHLymJrMlc-6CYm0LVumtzAoFTaVpCv33zkxSpQcP3sIkEJhvlvfNfO89AO4dhLXSMhIlqfaUHIkjQY2OlLBcWMUNxjaYTaSDQTaZ8FFNVg9cGGNMKD4zLf8Y7vL1XJX-qMzNcMRJxsku2KOEoLiia9VVW0nMHzrD9iuLHaRpeVfw1ub7LeeUsHH0jv75y2PQ_KXgwdHP5nICdkx-CtadUnxEAR9GnYVfp2B3VY8dsVjDoZv_nzWxEjo0Cr2QcShQ3341qlxkCuhPYaEXqJrl5bwsoMg1bHvtiEo5BL67TNpzq4omeOt1x-3HqPZOiGZJwpduaWVaxYJjrRKGiIqtQ3KSmSymwjIlFdcpMlmmEJHIKGoIl0qZxKWslDON8Rlo5PPcnANIsY0Tw1ywE04YtplMM045stwlgzKlF6Dp-236VcljTDdddvlH-x04eBy_9Kf9p8HzFTj0kfIFGAhdg8ZyUZobsK9Wy1mxuA3h_QYTFasJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Dual-State-Driven+Evolutionary+Optimization+for+Expensive+Optimization+Problems+with+Continuous+and+Categorical+Variables&rft.au=Xie%2C+Lindong&rft.au=Li%2C+Genghui&rft.au=Lin%2C+Kangnian&rft.au=Wang%2C+Zhenkun&rft.date=2023-09-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDOCS60977.2023.10294894&rft.externalDocID=10294894 |