Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables

The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitati...

Full description

Saved in:
Bibliographic Details
Published in:2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) pp. 1 - 7
Main Authors: Xie, Lindong, Li, Genghui, Lin, Kangnian, Wang, Zhenkun
Format: Conference Proceeding
Language:English
Published: IEEE 22.09.2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitation, a dual-state-driven evolutionary optimization (called DSDEO), integrating a surrogate-assisted mixed-variable evolutionary optimization stage (MVEOS) and a surrogate-assisted continuous-variable evolutionary optimization stage (CVEOS), is proposed in this paper. Specifically, MVEOS employs global and local search to enhance the exploration and exploitation of the mixed-variable space. Global and local searches are alternately executed if one search fails to yield a better solution. CVEOS utilizes a continuous-improvement strategy to refine the continuous variables of the best solution obtained so far. Experimental results demonstrate the advantages of DSDEO compared to some state-of-the-art SAEAs on many benchmark problems.
AbstractList The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization problems. However, it encounters significant challenges in expensive mixed-variable optimization problems (EMVOPs). To overcome this limitation, a dual-state-driven evolutionary optimization (called DSDEO), integrating a surrogate-assisted mixed-variable evolutionary optimization stage (MVEOS) and a surrogate-assisted continuous-variable evolutionary optimization stage (CVEOS), is proposed in this paper. Specifically, MVEOS employs global and local search to enhance the exploration and exploitation of the mixed-variable space. Global and local searches are alternately executed if one search fails to yield a better solution. CVEOS utilizes a continuous-improvement strategy to refine the continuous variables of the best solution obtained so far. Experimental results demonstrate the advantages of DSDEO compared to some state-of-the-art SAEAs on many benchmark problems.
Author Lin, Kangnian
Xie, Lindong
Wang, Zhenkun
Li, Genghui
Author_xml – sequence: 1
  givenname: Lindong
  surname: Xie
  fullname: Xie, Lindong
  email: 12132679@mail.sustech.edu.cn
  organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Shenzhen,P.R. China
– sequence: 2
  givenname: Genghui
  surname: Li
  fullname: Li, Genghui
  email: genghuili2-c@my.cityu.edu.hk
  organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Shenzhen,P.R. China
– sequence: 3
  givenname: Kangnian
  surname: Lin
  fullname: Lin, Kangnian
  email: 12132672@mail.sustech.edu.cn
  organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Shenzhen,P.R. China
– sequence: 4
  givenname: Zhenkun
  surname: Wang
  fullname: Wang, Zhenkun
  email: wangzhenkun90@gmail.com
  organization: School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,P.R. China
BookMark eNpVkM9Kw0AYxFfQg9a-geC-QOr-STb5jpJUKxQqVL2WzeaLLqS7YbOp1qc3oh48DcP8GJi5IKfOOyTkmrMF5wxuqk25VQzyfCGYkAvOBKQFpCdkDjkUMmMSZCb4OTlWo-6SbdQRkyrYAzq6PPhujNY7HY5000e7t5_629PWB7r86NENE_g_egy-7nA_0Hcb32jpXbRu9ONAtWtoObW_-mCN7uiLDlZP6HBJzlrdDTj_1Rl5vls-latkvbl_KG_XieUcYiK5agzTIBvDlUgNa0HIWmHBMt0qUxtocoFFYURaCzQZplAbg5xLmYFqpJyRq59ei4i7Ptj9tGv394j8AvH9Xss
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DOCS60977.2023.10294894
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350393521
EndPage 7
ExternalDocumentID 10294894
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62206120,62106096
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-316dc0a93dc1624c0f923b6e805af6cbc9d72e88c24b2ec5e49bcce1133596d33
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:11 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-316dc0a93dc1624c0f923b6e805af6cbc9d72e88c24b2ec5e49bcce1133596d33
PageCount 7
ParticipantIDs ieee_primary_10294894
PublicationCentury 2000
PublicationDate 2023-Sept.-22
PublicationDateYYYYMMDD 2023-09-22
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS)
PublicationTitleAbbrev DOCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8528211
Snippet The surrogate-assisted evolutionary algorithm (SAEA) is one of the most efficient approaches for addressing expensive continuous or combinatorial optimization...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Complex systems
continuous and categorical variables
dual-state-driven
Evolutionary computation
expensive mixed-variable optimization
Measurement
Prediction algorithms
Predictive models
Search problems
Surrogate-assisted evolutionary algorithm
Title Dual-State-Driven Evolutionary Optimization for Expensive Optimization Problems with Continuous and Categorical Variables
URI https://ieeexplore.ieee.org/document/10294894
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sCakjiOE899iAG1lYCqW-XHRaoEKUqaSv33-JwU1IGBLXIsRbqLz9_Z931HyGOcuZAHjAeR4uASFK0DpcEGKskNjxUD49X55y_pZJItFnLWktU9FwYAfPEZ9PHR3-XbtanxqMytcCZ5JnmHdNJUNGSttmYrCuXTcDp4FaEDNH3sCd7fzz7om-K3jfHpPz94Rnq_BDw6-9lazskRFBdkN6zVR-DRYTAsMUrR0bb9c1S5o1O3-j9bWiV1WJSijLEvTz98NWt6yFQUz2ApylOtinpdV1QVlg5QOaLRDaFzl0cjs6rqkffx6G3wHLSdE4JVFMmNC6zCmlDJ2DpTM27C3OE4LSALE5ULo420KYMsM4xr544EuNTGQOQS1kQKG8eXpFusC7gi1DiAl0uXhFimeKojhdNtbkSsE-xYdk16aLflVyOOsdyb7OaP8Vtygt7BkgvG7kh3U9ZwT47NdrOqygfv0m_PVKgn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BT2pOPHbHLxmtmnaNed9MHFuA-fYbeTjFQbaSrsO9t-bpJ2ygwdvJQ0U3mtefi95v99D6DGITcgDyogvGJgERUoiJGgiwkSxQFBQTp1_NmyPRvF8zic1Wd1xYQDAFZ9Byz66u3ydqdIelZkVTjmLOdtHByFj1KvoWnXVlu_xp-648xZ5BtK0bFfw1nb-TucUt3H0T_75yVPU_KXg4cnP5nKG9iA9R5tuKT6Iw4ekm9s4hXvr-t8R-QaPzfr_rImV2KBRbIWMXYH67qtJ1UWmwPYUFluBqmVaZmWBRapxx2pHVMoheGYyacutKprovd-bdgak7p1Alr7PVya0Rlp5ggfaGJsy5SUGyckIYi8USaSk4rpNIY4VZdI4JATGpVLgm5Q15JEOggvUSLMULhFWBuIl3KQhmgrWlr6w03WiokCGtmfZFWpauy2-KnmMxdZk13-MP6CjwfR1uBg-j15u0LH1lC3AoPQWNVZ5CXfoUK1XyyK_d-79Brasq24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Dual-State-Driven+Evolutionary+Optimization+for+Expensive+Optimization+Problems+with+Continuous+and+Categorical+Variables&rft.au=Xie%2C+Lindong&rft.au=Li%2C+Genghui&rft.au=Lin%2C+Kangnian&rft.au=Wang%2C+Zhenkun&rft.date=2023-09-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDOCS60977.2023.10294894&rft.externalDocID=10294894