Data Mining Algorithms Predict DAT1 and COMT Dopamine Genotypes Based on Reinforcement Learning Task

Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based teaching signals to how the human brain processes information using dopamine (among other neurotransmitters). Two main dopamine genes; DAT1 and COMT...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 IEEE World AI IoT Congress (AIIoT) s. 0678 - 0684
Hlavní autori: Natsheh, Ashar Y., Jayousi, Rashid, Herzallah, Mohammad M.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 07.06.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based teaching signals to how the human brain processes information using dopamine (among other neurotransmitters). Two main dopamine genes; DAT1 and COMT, have a key role in regulating dopamine levels in the brain. Each gene has two well-studied variations that modulate reinforcement learning differently, thus creating four DAT1-COMT interaction patterns. Every human being carries one out of the four patterns. Extracting genotype variations via biological sampling is costly and time-consuming. Here, we introduce a machine learning alternative for effectively predicting the DAT1-COMT genotype variations by training classifiers on data from a reinforcement learning task, namely: (1) . We k-nearest neighbor, random forest, and neural classifiers on reinforcement learning task data from 146 subjects who also provided blood samples for genotyping. The results showed that random forest has the best performance in predicting individual gene variations, while neural networks showed the highest performance for predicting the DAT1-COMT combined genotypes compared to biological sampling. Our approach opens a new direction for using machine learning in the form of reinforcement learning tasks and classifiers to infer key biological information.
AbstractList Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based teaching signals to how the human brain processes information using dopamine (among other neurotransmitters). Two main dopamine genes; DAT1 and COMT, have a key role in regulating dopamine levels in the brain. Each gene has two well-studied variations that modulate reinforcement learning differently, thus creating four DAT1-COMT interaction patterns. Every human being carries one out of the four patterns. Extracting genotype variations via biological sampling is costly and time-consuming. Here, we introduce a machine learning alternative for effectively predicting the DAT1-COMT genotype variations by training classifiers on data from a reinforcement learning task, namely: (1) . We k-nearest neighbor, random forest, and neural classifiers on reinforcement learning task data from 146 subjects who also provided blood samples for genotyping. The results showed that random forest has the best performance in predicting individual gene variations, while neural networks showed the highest performance for predicting the DAT1-COMT combined genotypes compared to biological sampling. Our approach opens a new direction for using machine learning in the form of reinforcement learning tasks and classifiers to infer key biological information.
Author Jayousi, Rashid
Natsheh, Ashar Y.
Herzallah, Mohammad M.
Author_xml – sequence: 1
  givenname: Ashar Y.
  surname: Natsheh
  fullname: Natsheh, Ashar Y.
  email: asharnatsheh@gmail.com
  organization: Al-Quds University,Palestinian Neuroscience Initiative,Jerusalem,Palestine
– sequence: 2
  givenname: Rashid
  surname: Jayousi
  fullname: Jayousi, Rashid
  email: rjayousi@staff.alquds.edu
  organization: Al-Quds University,Jerusalem,Palestine
– sequence: 3
  givenname: Mohammad M.
  surname: Herzallah
  fullname: Herzallah, Mohammad M.
  email: mohammad.m.herzallah@alquds.edu
  organization: Al-Quds University,Palestinian Neuroscience Initiative,Jerusalem,Palestine
BookMark eNo1z01OwzAQQGEjwQJKb8BiLpDgsZM4WYYWSqVWRSisq6k9LhaNXSXZ9PZI_Kze7pPenbiOKbIQgDJHlM1ju16nrqxRYa6k0jlKNIWW9ZWYN6apdSm1NhWaW-GWNBFsQwzxCO3pmIYwffYjvA3sgp1g2XYIFB0sdtsOlulMfYgMK45pupx5hCca2UGK8M4h-jRY7jlOsGEafsyOxq97cePpNPL8rzPx8fLcLV6zzW61XrSbLCA2U6blwciCfcU1-8bopnDS1ZYUebZFpYpDWfGBCyWNcmyw8p4sycqWiGyN0jPx8OsGZt6fh9DTcNn_z-tvusVUxw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIIoT58121.2023.10174308
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 9798350337617
EndPage 0684
ExternalDocumentID 10174308
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-30b704ef6e8ef97394d0d8ca2afec4624b56ebe42072de716ffaca06c511ec723
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:51 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-30b704ef6e8ef97394d0d8ca2afec4624b56ebe42072de716ffaca06c511ec723
PageCount 7
ParticipantIDs ieee_primary_10174308
PublicationCentury 2000
PublicationDate 2023-June-7
PublicationDateYYYYMMDD 2023-06-07
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-7
  day: 07
PublicationDecade 2020
PublicationTitle 2023 IEEE World AI IoT Congress (AIIoT)
PublicationTitleAbbrev AIIoT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8343761
Snippet Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based...
SourceID ieee
SourceType Publisher
StartPage 0678
SubjectTerms Biology
data mining
dopamine
feedback-based learning
Machine learning
Machine learning algorithms
Negative feedback
Neurotransmitters
prediction
Prediction algorithms
Reinforcement learning
Training
Title Data Mining Algorithms Predict DAT1 and COMT Dopamine Genotypes Based on Reinforcement Learning Task
URI https://ieeexplore.ieee.org/document/10174308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aFDz5qvgmB6_bZnfTZHOsrdWCrUVW6K1kk4kW7a50t4L_3iRtFQ8evIWQEDIzMM9vBqErkwFkrqyCWOkNKMQQJCrUgRCqlRjNQqZ9E9d7Phwm47EYrcDqHgsDAL74DBpu6XP5ulALFyprOvGhsYP2bnLOlmCtdXUOEc12v1-kLauxnN8XxY318V-DU7ze6O3-88U9VP9B4OHRt27ZRxuQH6Dt5eDIz0Oku7KSeOCHO-D223NhXfyXWWmvuLxLhbvtNMQy17jzMEhx1zrGM2tN4lvICxdzLfG1VV4aFzl-BN86VfkoIV51W33GqSxf6-ipd5N27oLVvIRgGoaiCmKScULBMEjACB4LqolOlIykAUVZRLMWszyjEeGRBusoGSOVJExZowsUj-IjVMuLHI4RJvZ_Yca5FGCoTozU1lSTzLSsQRALAieo7og1eV-2xJis6XT6x_4Z2nEs8TVW_BzVqvkCLtCW-qim5fzSM_ILAy2g0g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MavTkC-PbHrwudHe7jx4RRIiAxKwJN9Jtp0iUXcMuJv572wIaDx68NU0mTWcmmec3g9CNSgFS01ZBtPY6FHxwYuFKhzERxEqGbijtENdeNBjEoxEbrsDqFgsDALb5DGrmaGv5MhcLkyqrG_WhvoH2bgaUemQJ11r35xBWb3S7eRJom2UiP8-vrQl-rU6xlqO9988391H1B4OHh9_W5QBtQHaItperIz-PkGzxkuO-Xe-AG2-TXAf5L7NCk5jKS4lbjcTFPJO4-dhPcEuHxjPtT-J7yHKTdS3wrTZfEucZfgI7PFXYPCFezVud4IQXr1X03L5Lmh1ntTHBmbouKx2fpBGhoEKIQbHIZ1QSGQvucQWChh5Ng1BLTbMu8iToUEkpLjgJhXa7QESef4wqWZ7BCcJE_89No4gzUFTGikvtrPFQBdol8BmBU1Q1zBq_L4dijNd8Ovvj_hrtdJJ-b9zrDh7O0a4Rj-24ii5QpZwv4BJtiY9yWsyvrFC_AI48pBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+World+AI+IoT+Congress+%28AIIoT%29&rft.atitle=Data+Mining+Algorithms+Predict+DAT1+and+COMT+Dopamine+Genotypes+Based+on+Reinforcement+Learning+Task&rft.au=Natsheh%2C+Ashar+Y.&rft.au=Jayousi%2C+Rashid&rft.au=Herzallah%2C+Mohammad+M.&rft.date=2023-06-07&rft.pub=IEEE&rft.spage=0678&rft.epage=0684&rft_id=info:doi/10.1109%2FAIIoT58121.2023.10174308&rft.externalDocID=10174308