Data Mining Algorithms Predict DAT1 and COMT Dopamine Genotypes Based on Reinforcement Learning Task
Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based teaching signals to how the human brain processes information using dopamine (among other neurotransmitters). Two main dopamine genes; DAT1 and COMT...
Uložené v:
| Vydané v: | 2023 IEEE World AI IoT Congress (AIIoT) s. 0678 - 0684 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
07.06.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based teaching signals to how the human brain processes information using dopamine (among other neurotransmitters). Two main dopamine genes; DAT1 and COMT, have a key role in regulating dopamine levels in the brain. Each gene has two well-studied variations that modulate reinforcement learning differently, thus creating four DAT1-COMT interaction patterns. Every human being carries one out of the four patterns. Extracting genotype variations via biological sampling is costly and time-consuming. Here, we introduce a machine learning alternative for effectively predicting the DAT1-COMT genotype variations by training classifiers on data from a reinforcement learning task, namely: (1) . We k-nearest neighbor, random forest, and neural classifiers on reinforcement learning task data from 146 subjects who also provided blood samples for genotyping. The results showed that random forest has the best performance in predicting individual gene variations, while neural networks showed the highest performance for predicting the DAT1-COMT combined genotypes compared to biological sampling. Our approach opens a new direction for using machine learning in the form of reinforcement learning tasks and classifiers to infer key biological information. |
|---|---|
| AbstractList | Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based teaching signals to how the human brain processes information using dopamine (among other neurotransmitters). Two main dopamine genes; DAT1 and COMT, have a key role in regulating dopamine levels in the brain. Each gene has two well-studied variations that modulate reinforcement learning differently, thus creating four DAT1-COMT interaction patterns. Every human being carries one out of the four patterns. Extracting genotype variations via biological sampling is costly and time-consuming. Here, we introduce a machine learning alternative for effectively predicting the DAT1-COMT genotype variations by training classifiers on data from a reinforcement learning task, namely: (1) . We k-nearest neighbor, random forest, and neural classifiers on reinforcement learning task data from 146 subjects who also provided blood samples for genotyping. The results showed that random forest has the best performance in predicting individual gene variations, while neural networks showed the highest performance for predicting the DAT1-COMT combined genotypes compared to biological sampling. Our approach opens a new direction for using machine learning in the form of reinforcement learning tasks and classifiers to infer key biological information. |
| Author | Jayousi, Rashid Natsheh, Ashar Y. Herzallah, Mohammad M. |
| Author_xml | – sequence: 1 givenname: Ashar Y. surname: Natsheh fullname: Natsheh, Ashar Y. email: asharnatsheh@gmail.com organization: Al-Quds University,Palestinian Neuroscience Initiative,Jerusalem,Palestine – sequence: 2 givenname: Rashid surname: Jayousi fullname: Jayousi, Rashid email: rjayousi@staff.alquds.edu organization: Al-Quds University,Jerusalem,Palestine – sequence: 3 givenname: Mohammad M. surname: Herzallah fullname: Herzallah, Mohammad M. email: mohammad.m.herzallah@alquds.edu organization: Al-Quds University,Palestinian Neuroscience Initiative,Jerusalem,Palestine |
| BookMark | eNo1z01OwzAQQGEjwQJKb8BiLpDgsZM4WYYWSqVWRSisq6k9LhaNXSXZ9PZI_Kze7pPenbiOKbIQgDJHlM1ju16nrqxRYa6k0jlKNIWW9ZWYN6apdSm1NhWaW-GWNBFsQwzxCO3pmIYwffYjvA3sgp1g2XYIFB0sdtsOlulMfYgMK45pupx5hCca2UGK8M4h-jRY7jlOsGEafsyOxq97cePpNPL8rzPx8fLcLV6zzW61XrSbLCA2U6blwciCfcU1-8bopnDS1ZYUebZFpYpDWfGBCyWNcmyw8p4sycqWiGyN0jPx8OsGZt6fh9DTcNn_z-tvusVUxw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/AIIoT58121.2023.10174308 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISBN | 9798350337617 |
| EndPage | 0684 |
| ExternalDocumentID | 10174308 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-30b704ef6e8ef97394d0d8ca2afec4624b56ebe42072de716ffaca06c511ec723 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:51 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-30b704ef6e8ef97394d0d8ca2afec4624b56ebe42072de716ffaca06c511ec723 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10174308 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-June-7 |
| PublicationDateYYYYMMDD | 2023-06-07 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-June-7 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 IEEE World AI IoT Congress (AIIoT) |
| PublicationTitleAbbrev | AIIoT |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8343761 |
| Snippet | Reinforcement learning implies learning from positive and negative feedback when an agent interacts with its environment. Studies mapped feedback-based... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 0678 |
| SubjectTerms | Biology data mining dopamine feedback-based learning Machine learning Machine learning algorithms Negative feedback Neurotransmitters prediction Prediction algorithms Reinforcement learning Training |
| Title | Data Mining Algorithms Predict DAT1 and COMT Dopamine Genotypes Based on Reinforcement Learning Task |
| URI | https://ieeexplore.ieee.org/document/10174308 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aFDz5qvgmB6_bZnfTZHOsrdWCrUVW6K1kk4kW7a50t4L_3iRtFQ8evIWQEDIzMM9vBqErkwFkrqyCWOkNKMQQJCrUgRCqlRjNQqZ9E9d7Phwm47EYrcDqHgsDAL74DBpu6XP5ulALFyprOvGhsYP2bnLOlmCtdXUOEc12v1-kLauxnN8XxY318V-DU7ze6O3-88U9VP9B4OHRt27ZRxuQH6Dt5eDIz0Oku7KSeOCHO-D223NhXfyXWWmvuLxLhbvtNMQy17jzMEhx1zrGM2tN4lvICxdzLfG1VV4aFzl-BN86VfkoIV51W33GqSxf6-ipd5N27oLVvIRgGoaiCmKScULBMEjACB4LqolOlIykAUVZRLMWszyjEeGRBusoGSOVJExZowsUj-IjVMuLHI4RJvZ_Yca5FGCoTozU1lSTzLSsQRALAieo7og1eV-2xJis6XT6x_4Z2nEs8TVW_BzVqvkCLtCW-qim5fzSM_ILAy2g0g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MavTkC-PbHrwudHe7jx4RRIiAxKwJN9Jtp0iUXcMuJv572wIaDx68NU0mTWcmmec3g9CNSgFS01ZBtPY6FHxwYuFKhzERxEqGbijtENdeNBjEoxEbrsDqFgsDALb5DGrmaGv5MhcLkyqrG_WhvoH2bgaUemQJ11r35xBWb3S7eRJom2UiP8-vrQl-rU6xlqO9988391H1B4OHh9_W5QBtQHaItperIz-PkGzxkuO-Xe-AG2-TXAf5L7NCk5jKS4lbjcTFPJO4-dhPcEuHxjPtT-J7yHKTdS3wrTZfEucZfgI7PFXYPCFezVud4IQXr1X03L5Lmh1ntTHBmbouKx2fpBGhoEKIQbHIZ1QSGQvucQWChh5Ng1BLTbMu8iToUEkpLjgJhXa7QESef4wqWZ7BCcJE_89No4gzUFTGikvtrPFQBdol8BmBU1Q1zBq_L4dijNd8Ovvj_hrtdJJ-b9zrDh7O0a4Rj-24ii5QpZwv4BJtiY9yWsyvrFC_AI48pBk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+World+AI+IoT+Congress+%28AIIoT%29&rft.atitle=Data+Mining+Algorithms+Predict+DAT1+and+COMT+Dopamine+Genotypes+Based+on+Reinforcement+Learning+Task&rft.au=Natsheh%2C+Ashar+Y.&rft.au=Jayousi%2C+Rashid&rft.au=Herzallah%2C+Mohammad+M.&rft.date=2023-06-07&rft.pub=IEEE&rft.spage=0678&rft.epage=0684&rft_id=info:doi/10.1109%2FAIIoT58121.2023.10174308&rft.externalDocID=10174308 |