Prairie Dog Optimization Based Efficient Task Scheduling in the Cloud Computing
In Cloud Computing CC, scheduling the algorithms depicts the significant role of identifying the possible tasks scheduling. An efficient task scheduling is considerable to achieve the cost-effective execution as well as enhance the resource utilization. The task scheduling problem is to classified a...
Uloženo v:
| Vydáno v: | 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
24.11.2023
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In Cloud Computing CC, scheduling the algorithms depicts the significant role of identifying the possible tasks scheduling. An efficient task scheduling is considerable to achieve the cost-effective execution as well as enhance the resource utilization. The task scheduling problem is to classified as the Nondeterministic Polynomial (NP)-hard problem. To solve this issue, this research proposed an efficient metaheuristic algorithm named Prairie Dog Optimization (PDO) to enhance the task scheduling behaviour in the cloud. The PDO is proposed to improve the task transmitting performance by the cloud network based on the workload of the cloud resources. The proposed method utilizes four prairie dog activities to attains the two basic optimization phases such as exploration and exploitation. The PDO utilizes the two strategies named burrow and foraging to attains the efficient and effective resource allocation. The PDO is modelled for scheduling and distributing the tasks are developed by utilizing the Virtual Machine (VM) factors, time as well as cost. The proposed PDO method attains better results and it achieves the makespan of 112.65, energy consumption of 90.47 and Degree of Imbalance (DoI) of 1.1 respectively when compared to the existing methods like Particle Swarm Optimization, Antlion Optimization (ALO) and Genetic Algorithm (GA). |
|---|---|
| AbstractList | In Cloud Computing CC, scheduling the algorithms depicts the significant role of identifying the possible tasks scheduling. An efficient task scheduling is considerable to achieve the cost-effective execution as well as enhance the resource utilization. The task scheduling problem is to classified as the Nondeterministic Polynomial (NP)-hard problem. To solve this issue, this research proposed an efficient metaheuristic algorithm named Prairie Dog Optimization (PDO) to enhance the task scheduling behaviour in the cloud. The PDO is proposed to improve the task transmitting performance by the cloud network based on the workload of the cloud resources. The proposed method utilizes four prairie dog activities to attains the two basic optimization phases such as exploration and exploitation. The PDO utilizes the two strategies named burrow and foraging to attains the efficient and effective resource allocation. The PDO is modelled for scheduling and distributing the tasks are developed by utilizing the Virtual Machine (VM) factors, time as well as cost. The proposed PDO method attains better results and it achieves the makespan of 112.65, energy consumption of 90.47 and Degree of Imbalance (DoI) of 1.1 respectively when compared to the existing methods like Particle Swarm Optimization, Antlion Optimization (ALO) and Genetic Algorithm (GA). |
| Author | Hussein, Abbas Hameed Abdul Kotha, Mahesh Sunil, G Alzubaidi, Laith H. Arunasree, B |
| Author_xml | – sequence: 1 givenname: Abbas Hameed Abdul surname: Hussein fullname: Hussein, Abbas Hameed Abdul email: Abdul.hussien@abu.edu.iq organization: Ahl Al Bayt University,College of Pharmacy,Karbala,Iraq – sequence: 2 givenname: G surname: Sunil fullname: Sunil, G email: goli.sunilreddy@gmail.com organization: SR University,School of Computer Science & Artificial Intelligence,Warangal,India – sequence: 3 givenname: Mahesh surname: Kotha fullname: Kotha, Mahesh email: Kotha.mahesh528@gmail.com organization: CMR technical Campus,Department of Computer Science and Engineering,Hyderabad,India – sequence: 4 givenname: Laith H. surname: Alzubaidi fullname: Alzubaidi, Laith H. email: laith.h.alzubaidi@gmail.com organization: The Islamic university,Najaf,Iraq – sequence: 5 givenname: B surname: Arunasree fullname: Arunasree, B email: srikiron@gmail.com organization: Malla Reddy Engineering College for Women,Hyderabad,India |
| BookMark | eNo1j8tOwzAURI0ECyj9AxbmAxL8iJt4CaZApEpBallXrn3dXpE4UeIs4OupBKxGmjM60tyQy9hHIOSes5xzph9qU9dmq7TWMhdMyJyzQnC1EhdkqUtdScUkV4VS16R5Hy2OCPS5P9JmSNjht03YR_pkJ_B0HQI6hJjozk6fdOtO4OcW45FipOkE1LT97Knpu2FO5_qWXAXbTrD8ywX5eFnvzFu2aV5r87jJkHOdMhGUBFdVhbNgq1XpleNQWihDKQ9ennGldeBWWBY8k0FocXAFD05qdh4puSB3v14EgP0wYmfHr_3_T_kDDVROVw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIICS59993.2023.10421562 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350315455 |
| EndPage | 5 |
| ExternalDocumentID | 10421562 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-2f53ec884caea867d5c1e7ae7f73bd32f5899f1a2a0fd03f292bc41fc390e7f53 |
| IEDL.DBID | RIE |
| IngestDate | Wed May 01 11:58:52 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-2f53ec884caea867d5c1e7ae7f73bd32f5899f1a2a0fd03f292bc41fc390e7f53 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10421562 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Nov.-24 |
| PublicationDateYYYYMMDD | 2023-11-24 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) |
| PublicationTitleAbbrev | ICIICS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8665762 |
| Snippet | In Cloud Computing CC, scheduling the algorithms depicts the significant role of identifying the possible tasks scheduling. An efficient task scheduling is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Cloud computing Dogs Genetic algorithms Nondeterministic Polynomial Optimization Prairie Dog Optimization Processor scheduling Scheduling Task analysis Task Scheduling Virtual Machine |
| Title | Prairie Dog Optimization Based Efficient Task Scheduling in the Cloud Computing |
| URI | https://ieeexplore.ieee.org/document/10421562 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aRFypWPFNBLepM5Nkktk6tliQttAq3ZU0jzJoZ6QPv9-bdKq4cOHukoSE3JCcvM65CN15wRbOqSCR044AQlGiIjclmmnmDAMziPq8PoteT47H2aAmqwcujLU2fD6zLW-Gt3xT6bW_KoMZzgCh_Iq7K0S6IWvto9taN_O-m3e7-ZDDloe2fFTw1rb8r8gpATg6h_9s8gg1fyh4ePANLsdox5YnqD9YqALOtvixmuE-TPZ5zaLEDwBGBreDHgRUiEdq-YaHMCDG_zSf4aLEsNPD-Xu1NngTyQGSm-il0x7lT6SOiECKOM5WJHGcWi0l08oqmQrDdWyFssIJOjUUsuH45GKVgL9NRF2SJVPNYqdpFkEhTk9Ro6xKe4ZwZphjXKg0dRFzEgwubJRJ6LBk1kXnqOm9MfnYiF5Mto64-CP9Eh14n3uaXsKuUGO1WNtrtKc_V8VycROG6gvy_JY9 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQIOAEiCJ2jMQ1xYnt2rkSWjWitJVaUG-V66WKgAR14fsZpymIAwduIy-xPJbzvL03CN16wRbOqQiI0y4AhKKBIm4SaKaZMwzMUtTnpSO6XTkaxf2KrF5yYay15eMzW_dmeZdvCr30R2UwwxkglP_jbnHGIrKia-2gm0o58y5N0jQZcFj00LqPC15f1_gVO6WEjtb-Pxs9QLUfEh7uf8PLIdqw-RHq9Wcqg90tfiimuAfT_b3iUeJ7gCODm6UiBHwQD9X8FQ9gSIx_az7FWY5hrYeTt2Jp8CqWAyTX0HOrOUzaQRUTIcjCMF4EkePUaimZVlbJhjBch1YoK5ygE0MhGzZQLlQReNwQ6qI4mmgWOk1jAoU4PUabeZHbE4RjwxzjQjUajjAnweDCklhChyWzjpyimvfG-GMlezFeO-Lsj_RrtNsePnXGnbT7eI72vP89aS9iF2hzMVvaS7StPxfZfHZVDtsX88OZhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Integrated+Intelligence+and+Communication+Systems+%28ICIICS%29&rft.atitle=Prairie+Dog+Optimization+Based+Efficient+Task+Scheduling+in+the+Cloud+Computing&rft.au=Hussein%2C+Abbas+Hameed+Abdul&rft.au=Sunil%2C+G&rft.au=Kotha%2C+Mahesh&rft.au=Alzubaidi%2C+Laith+H.&rft.date=2023-11-24&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICIICS59993.2023.10421562&rft.externalDocID=10421562 |