Variational Quantum Algorithm Parameter Tuning with Estimation of Distribution Algorithms
Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter configurations for a quantum parametric circuit which is iteratively sampled. The overall performance of the algorithm depends on how the classical op...
Uložené v:
| Vydané v: | 2023 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 9 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2023
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter configurations for a quantum parametric circuit which is iteratively sampled. The overall performance of the algorithm depends on how the classical optimizer tunes the parameters of the quantum circuit. Several gradient-free and gradient-based approaches have been proposed in the literature to face this task. Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is updated and sampled at each generation to optimize a cost function. EDAs have shown to be able to achieve good solutions in a reasonable computation time for different optimization problems, and thus, we believe that this algorithm can be a good option to overcome VQAs challenges such as the Barren plateaus phenomenon. In this paper, we study the use of three different EDAs, characterized by different probabilistic model complexities, to tune the parameters of two different VQAs to solver the Max Cut problem and to a VQA to simulate the behaviour of a molecule. Three EDA variants are compared to some state-of-the-art optimizers widely used for this task. Our results show statistical significant improvement of the EDA variants compared to different optimizers, and identify the VQAs characteristics that best fit to each EDA type. We also perform an analysis of the main EDAs hyper-parameters. |
|---|---|
| AbstractList | Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter configurations for a quantum parametric circuit which is iteratively sampled. The overall performance of the algorithm depends on how the classical optimizer tunes the parameters of the quantum circuit. Several gradient-free and gradient-based approaches have been proposed in the literature to face this task. Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is updated and sampled at each generation to optimize a cost function. EDAs have shown to be able to achieve good solutions in a reasonable computation time for different optimization problems, and thus, we believe that this algorithm can be a good option to overcome VQAs challenges such as the Barren plateaus phenomenon. In this paper, we study the use of three different EDAs, characterized by different probabilistic model complexities, to tune the parameters of two different VQAs to solver the Max Cut problem and to a VQA to simulate the behaviour of a molecule. Three EDA variants are compared to some state-of-the-art optimizers widely used for this task. Our results show statistical significant improvement of the EDA variants compared to different optimizers, and identify the VQAs characteristics that best fit to each EDA type. We also perform an analysis of the main EDAs hyper-parameters. |
| Author | Bielza, Concha Soloviev, Vicente P. Larranaga, Pedro |
| Author_xml | – sequence: 1 givenname: Vicente P. surname: Soloviev fullname: Soloviev, Vicente P. email: vicente.perez.soloviev@upm.es organization: Universidad Politécnica de Madrid,Department of Artificial Intelligence,Spain – sequence: 2 givenname: Pedro surname: Larranaga fullname: Larranaga, Pedro email: pedro.larranaga@upm.es organization: Universidad Politécnica de Madrid,Department of Artificial Intelligence,Spain – sequence: 3 givenname: Concha surname: Bielza fullname: Bielza, Concha email: mcbielza@upm.es organization: Universidad Politécnica de Madrid,Department of Artificial Intelligence,Spain |
| BookMark | eNo9j91Kw0AUhFfQC619A5F9gdQ9-5NsLkusViioUAWvyjnNpi4kG9lsEN_eUH-uhhn4hpkLdhr64Bi7BrEAEOVNtaqMkpOTQqoFCGk0KHvC5mVRWmWEAm2sPWdvrxg9Jt8HbPnziCGNHV-2hz769N7xJ4zYueQi347BhwP_nGK-GpLvjhDvG37rhxQ9jUf_jw6X7KzBdnDzX52xl7vVtlpnm8f7h2q5yTxAmTKZI8mCBImaEA2AacBYyh0pmpbWzu7zKcsLSxa01pCjI9MUJJWuTblXM3b10-udc7uPOC2LX7u_x-obca5R1Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC53210.2023.10254138 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350314588 |
| EndPage | 9 |
| ExternalDocumentID | 10254138 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Spanish Ministry of Science and Innovation grantid: PID2019-109247GB-I00,TED2021-131310B-I00,RTC2019-006871-7 funderid: 10.13039/501100004837 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-26ab27b0b0dbaa5115f158b6eb3b983de8c615f678b8144416aeb5f7b234d59c3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 04 09:12:47 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-26ab27b0b0dbaa5115f158b6eb3b983de8c615f678b8144416aeb5f7b234d59c3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_10254138 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-July-1 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 IEEE Congress on Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8365003 |
| Snippet | Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Computational modeling Cost function Estimation estimation of distribution algorithm Evolutionary computation gradient-based approach gradient-free approach Probabilistic logic Quantum algorithm Quantum computing Quantum optimization variational quantum algorithms |
| Title | Variational Quantum Algorithm Parameter Tuning with Estimation of Distribution Algorithms |
| URI | https://ieeexplore.ieee.org/document/10254138 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-5YE1xY7jxBlRacVUFamgMlU-f0Al2qA24fdzTlIqBga2KEoU6UX23Tvfu0fILccwI6zxkZHORrhLphFom0aY2TKwYCwAq80msvFYzWb5pBWr11oY51zdfOb64bI-y7eFqUKpDFc40hkuVId0sixtxFqt6pez_G4wHMggSekHS_D-9uFftil11Bgd_vN7R6S309_RyU9kOSZ7bnVCXl-Q1ralO_pUISLVkt5_vBVI79-XdKJDmxWiRKdVqHXQUGGlQ1zBjTiRFp4-hCm5rcHV7tVNjzyPhtPBY9QaI0QLzvMyilMNcQYMmAWtMWWSnksFKRJjyJWwThlMVDzGIVBImDDn0g6kzyAWiZW5EaekuypW7ozQOIyTt0mqhWKJ40YZl0jvjQgHtIq5c9ILuMw_m9kX8y0kF3_cvyQHAf2mofWKdMt15a7JvvkqF5v1Tf3HvgFZB5qe |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aBT2pWPHbHLymJpvNNnuU2lKxlgpV6qnkUwu2K23X3-9kd2vx4MHbsmxYmDCZeZN58xC6ZhBmuDWeGOEsgVMyIVrZhEBmS7XVxmpNC7GJZr8vR6N0UJHVCy6Mc65oPnON8Fjc5dvM5KFUBh4OcIZxuYm2RAzAp6RrVbxfRtObVrslAimlEUTBG6vPfwmnFHGjs_fPP-6j-pqBhwc_seUAbbjZIXp9AWBbFe_wUw42yaf49uMtA4D_PsUDFRqtwE54mIdqBw41VtwGHy7piTjz-C7Mya0krtZLF3X03GkPW11SSSOQCWPpkkSJ0lFTU02tVgqSJuGZkDoBaKxTya2TBlIVD5FIS4BMkHUpp4Vv6ojHVqSGH6HaLJu5Y4SjMFDexoniksaOGWlcLLw3PFzRSupOUD3YZfxZTr8Yr0xy-sf7K7TTHT72xr37_sMZ2g07Uba3nqPacp67C7RtvpaTxfyy2L1vkmOd5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Variational+Quantum+Algorithm+Parameter+Tuning+with+Estimation+of+Distribution+Algorithms&rft.au=Soloviev%2C+Vicente+P.&rft.au=Larranaga%2C+Pedro&rft.au=Bielza%2C+Concha&rft.date=2023-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FCEC53210.2023.10254138&rft.externalDocID=10254138 |