Variational Quantum Algorithm Parameter Tuning with Estimation of Distribution Algorithms

Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter configurations for a quantum parametric circuit which is iteratively sampled. The overall performance of the algorithm depends on how the classical op...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 9
Hlavní autori: Soloviev, Vicente P., Larranaga, Pedro, Bielza, Concha
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2023
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter configurations for a quantum parametric circuit which is iteratively sampled. The overall performance of the algorithm depends on how the classical optimizer tunes the parameters of the quantum circuit. Several gradient-free and gradient-based approaches have been proposed in the literature to face this task. Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is updated and sampled at each generation to optimize a cost function. EDAs have shown to be able to achieve good solutions in a reasonable computation time for different optimization problems, and thus, we believe that this algorithm can be a good option to overcome VQAs challenges such as the Barren plateaus phenomenon. In this paper, we study the use of three different EDAs, characterized by different probabilistic model complexities, to tune the parameters of two different VQAs to solver the Max Cut problem and to a VQA to simulate the behaviour of a molecule. Three EDA variants are compared to some state-of-the-art optimizers widely used for this task. Our results show statistical significant improvement of the EDA variants compared to different optimizers, and identify the VQAs characteristics that best fit to each EDA type. We also perform an analysis of the main EDAs hyper-parameters.
AbstractList Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter configurations for a quantum parametric circuit which is iteratively sampled. The overall performance of the algorithm depends on how the classical optimizer tunes the parameters of the quantum circuit. Several gradient-free and gradient-based approaches have been proposed in the literature to face this task. Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is updated and sampled at each generation to optimize a cost function. EDAs have shown to be able to achieve good solutions in a reasonable computation time for different optimization problems, and thus, we believe that this algorithm can be a good option to overcome VQAs challenges such as the Barren plateaus phenomenon. In this paper, we study the use of three different EDAs, characterized by different probabilistic model complexities, to tune the parameters of two different VQAs to solver the Max Cut problem and to a VQA to simulate the behaviour of a molecule. Three EDA variants are compared to some state-of-the-art optimizers widely used for this task. Our results show statistical significant improvement of the EDA variants compared to different optimizers, and identify the VQAs characteristics that best fit to each EDA type. We also perform an analysis of the main EDAs hyper-parameters.
Author Bielza, Concha
Soloviev, Vicente P.
Larranaga, Pedro
Author_xml – sequence: 1
  givenname: Vicente P.
  surname: Soloviev
  fullname: Soloviev, Vicente P.
  email: vicente.perez.soloviev@upm.es
  organization: Universidad Politécnica de Madrid,Department of Artificial Intelligence,Spain
– sequence: 2
  givenname: Pedro
  surname: Larranaga
  fullname: Larranaga, Pedro
  email: pedro.larranaga@upm.es
  organization: Universidad Politécnica de Madrid,Department of Artificial Intelligence,Spain
– sequence: 3
  givenname: Concha
  surname: Bielza
  fullname: Bielza, Concha
  email: mcbielza@upm.es
  organization: Universidad Politécnica de Madrid,Department of Artificial Intelligence,Spain
BookMark eNo9j91Kw0AUhFfQC619A5F9gdQ9-5NsLkusViioUAWvyjnNpi4kG9lsEN_eUH-uhhn4hpkLdhr64Bi7BrEAEOVNtaqMkpOTQqoFCGk0KHvC5mVRWmWEAm2sPWdvrxg9Jt8HbPnziCGNHV-2hz769N7xJ4zYueQi347BhwP_nGK-GpLvjhDvG37rhxQ9jUf_jw6X7KzBdnDzX52xl7vVtlpnm8f7h2q5yTxAmTKZI8mCBImaEA2AacBYyh0pmpbWzu7zKcsLSxa01pCjI9MUJJWuTblXM3b10-udc7uPOC2LX7u_x-obca5R1Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC53210.2023.10254138
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350314588
EndPage 9
ExternalDocumentID 10254138
Genre orig-research
GrantInformation_xml – fundername: Spanish Ministry of Science and Innovation
  grantid: PID2019-109247GB-I00,TED2021-131310B-I00,RTC2019-006871-7
  funderid: 10.13039/501100004837
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-26ab27b0b0dbaa5115f158b6eb3b983de8c615f678b8144416aeb5f7b234d59c3
IEDL.DBID RIE
IngestDate Wed Oct 04 09:12:47 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-26ab27b0b0dbaa5115f158b6eb3b983de8c615f678b8144416aeb5f7b234d59c3
PageCount 9
ParticipantIDs ieee_primary_10254138
PublicationCentury 2000
PublicationDate 2023-July-1
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-1
  day: 01
PublicationDecade 2020
PublicationTitle 2023 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8365003
Snippet Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Cost function
Estimation
estimation of distribution algorithm
Evolutionary computation
gradient-based approach
gradient-free approach
Probabilistic logic
Quantum algorithm
Quantum computing
Quantum optimization
variational quantum algorithms
Title Variational Quantum Algorithm Parameter Tuning with Estimation of Distribution Algorithms
URI https://ieeexplore.ieee.org/document/10254138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-5YE1xY7jxBlRacVUFamgMlU-f0Al2qA24fdzTlIqBga2KEoU6UX23Tvfu0fILccwI6zxkZHORrhLphFom0aY2TKwYCwAq80msvFYzWb5pBWr11oY51zdfOb64bI-y7eFqUKpDFc40hkuVId0sixtxFqt6pez_G4wHMggSekHS_D-9uFftil11Bgd_vN7R6S309_RyU9kOSZ7bnVCXl-Q1ralO_pUISLVkt5_vBVI79-XdKJDmxWiRKdVqHXQUGGlQ1zBjTiRFp4-hCm5rcHV7tVNjzyPhtPBY9QaI0QLzvMyilMNcQYMmAWtMWWSnksFKRJjyJWwThlMVDzGIVBImDDn0g6kzyAWiZW5EaekuypW7ozQOIyTt0mqhWKJ40YZl0jvjQgHtIq5c9ILuMw_m9kX8y0kF3_cvyQHAf2mofWKdMt15a7JvvkqF5v1Tf3HvgFZB5qe
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aBT2pWPHbHLymJpvNNnuU2lKxlgpV6qnkUwu2K23X3-9kd2vx4MHbsmxYmDCZeZN58xC6ZhBmuDWeGOEsgVMyIVrZhEBmS7XVxmpNC7GJZr8vR6N0UJHVCy6Mc65oPnON8Fjc5dvM5KFUBh4OcIZxuYm2RAzAp6RrVbxfRtObVrslAimlEUTBG6vPfwmnFHGjs_fPP-6j-pqBhwc_seUAbbjZIXp9AWBbFe_wUw42yaf49uMtA4D_PsUDFRqtwE54mIdqBw41VtwGHy7piTjz-C7Mya0krtZLF3X03GkPW11SSSOQCWPpkkSJ0lFTU02tVgqSJuGZkDoBaKxTya2TBlIVD5FIS4BMkHUpp4Vv6ojHVqSGH6HaLJu5Y4SjMFDexoniksaOGWlcLLw3PFzRSupOUD3YZfxZTr8Yr0xy-sf7K7TTHT72xr37_sMZ2g07Uba3nqPacp67C7RtvpaTxfyy2L1vkmOd5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Variational+Quantum+Algorithm+Parameter+Tuning+with+Estimation+of+Distribution+Algorithms&rft.au=Soloviev%2C+Vicente+P.&rft.au=Larranaga%2C+Pedro&rft.au=Bielza%2C+Concha&rft.date=2023-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FCEC53210.2023.10254138&rft.externalDocID=10254138