Real-time prediction of free lime in cement clinker using support vector machine algorithm

Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict absolute free lime content, using soft sensors data, with limited success due to the complexity of the clinker burning process. Subject matter exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 4th International Conference on Big Data Analytics and Practices (IBDAP) S. 1 - 4
Hauptverfasser: Kannan, Rathimala, Ghanim, Ahmad Hanif, Ramakrishnan, Kannan, More, Satesh
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 25.08.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict absolute free lime content, using soft sensors data, with limited success due to the complexity of the clinker burning process. Subject matter experts believe that, instead of predicting the free lime absolute value, predicting free lime quality as good, over-burn, or under-burn is more practically beneficial. This study aims to predict the free lime clinker quality as good or under-burn by leveraging data mining methods and machine learning techniques. Seven months of hourly data pertinent to rotary kiln feed chemistry and operation parameters were collected from a real operational cement plant. Classification models were built using support vector machine (SVM). The SVM produced a sensitivity value of 0.998 for good clinker class and 0.865 for under-burn class with an accuracy of 96%. The availability of these predictions in real time can help plant operators to avoid under-burning and over-burning. Such insights will assist relevant cement plants to reduce off-specification products, coal usage, production cost, and carbon emissions.
AbstractList Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict absolute free lime content, using soft sensors data, with limited success due to the complexity of the clinker burning process. Subject matter experts believe that, instead of predicting the free lime absolute value, predicting free lime quality as good, over-burn, or under-burn is more practically beneficial. This study aims to predict the free lime clinker quality as good or under-burn by leveraging data mining methods and machine learning techniques. Seven months of hourly data pertinent to rotary kiln feed chemistry and operation parameters were collected from a real operational cement plant. Classification models were built using support vector machine (SVM). The SVM produced a sensitivity value of 0.998 for good clinker class and 0.865 for under-burn class with an accuracy of 96%. The availability of these predictions in real time can help plant operators to avoid under-burning and over-burning. Such insights will assist relevant cement plants to reduce off-specification products, coal usage, production cost, and carbon emissions.
Author Ramakrishnan, Kannan
More, Satesh
Ghanim, Ahmad Hanif
Kannan, Rathimala
Author_xml – sequence: 1
  givenname: Rathimala
  surname: Kannan
  fullname: Kannan, Rathimala
  email: rathimala.kannan@mmu.edu.my
  organization: Multimedia University,Faculty of Management,Department of Information Technology,Cyberjaya,Selangor,Malaysia
– sequence: 2
  givenname: Ahmad Hanif
  surname: Ghanim
  fullname: Ghanim, Ahmad Hanif
  email: ahmad.ghanim@ipmi.ac.id
  organization: IPMI International Business School,Jakarta,Indonesia
– sequence: 3
  givenname: Kannan
  surname: Ramakrishnan
  fullname: Ramakrishnan, Kannan
  email: kannan.ramakrishnan@mmu.edu.my
  organization: Multimedia University,Faculty of Computing and Informatics,Cyberjaya,Selangor,Malaysia
– sequence: 4
  givenname: Satesh
  surname: More
  fullname: More, Satesh
  email: satesh.more@cemindo.com
  organization: PT Cemindo Gemilang Tbk,Performance Management Technical Directorate,Jakarta,Indonesia
BookMark eNo1j8tKxDAUQCPoQsf5Axf3B1rzaJpkOY6vgQFFdONmSNObmWCblDQj-Pci6urAWRw4F-Q0poiEAKM1Y9Rcb25uV89SS81qTrmoGeWKGUNPyNIoo4WkglJm-Dl5f0E7VCWMCFPGPrgSUoTkwWdEGH58iOBwxFjADSF-YIbjHOIe5uM0pVzgE11JGUbrDiEi2GGfciiH8ZKceTvMuPzjgrzd372uH6vt08NmvdpWgTFTKt5abS3nXrZGqbZ1wiovXSM65VXfGd34XgrdMNPpXveuUb2m1rSi01RJ1YgFufrtBkTcTTmMNn_t_pfFN-lsUb8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IBDAP58581.2023.10271990
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350300192
EndPage 4
ExternalDocumentID 10271990
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-26a8aa22f5697766c3a7f5c43b7f7db984fd538419b8d8dc47d80a963b8075743
IEDL.DBID RIE
IngestDate Wed Oct 18 05:40:19 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-26a8aa22f5697766c3a7f5c43b7f7db984fd538419b8d8dc47d80a963b8075743
PageCount 4
ParticipantIDs ieee_primary_10271990
PublicationCentury 2000
PublicationDate 2023-Aug.-25
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-25
  day: 25
PublicationDecade 2020
PublicationTitle 2023 4th International Conference on Big Data Analytics and Practices (IBDAP)
PublicationTitleAbbrev IBDAP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8426137
Snippet Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Cement industry
Classification algorithms
Clinker quality
Data models
Machine learning
Predictive models
Production
Sensitivity
Soft sensors
Support vector machine
Support vector machines
Title Real-time prediction of free lime in cement clinker using support vector machine algorithm
URI https://ieeexplore.ieee.org/document/10271990
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhN7Sa7SfboqyhIKaJSvJS8ti62u8t2299vJm0VDx68hRAIfGEm30zmyyB0KVXPeJqREk6pJbHRgugoyggVNBaWyUQHefTbkxgM5GiUDtdi9aCFcc6F4jPXhWF4y7elWUCqzFs4FZF3ny3UEoKvxFqb6pxeevV4c3c99PRXQtxHWXez_FfjlHBv9Hf_ueMe6vwo8PDw-27ZR1uuOEDvz57VEegGj6saHlgAVFxmOKudw1OYzwtsQsIPg-Tx09UYCtsneL6ogGjjZUjS41kooXRYTSdlnTcfsw567d-_3D6QdW8EkkdR2hDKlVSK0izhnsFxbpgSWWJipkUmrE5lnFnvy-Io1dJKazzwsqe8tWn4fdjThkPULsrCHSEswgJufKRkfbhEvUUn0jFFGRPSM5Jj1AFgxtXq-4vxBpOTP-ZP0Q7AD4lXmpyhdlMv3DnaNssmn9cX4dC-AOFcmPY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl5Tu9lHskdfxWItRaoULyXPutjulu22v99MbBUPHryFISEwYTLfTObLIHTJRVM5mJGShFJNIiUZkUFgCWU0YjrksfT06NcO63b5YJD2lmR1z4UxxvjiM9OAoX_L14WaQ6rMWThlgbs-19EGtM5a0rVW9TnN9Kp9c3fdcwCYQ-RHw8Zqwa_WKd5ztHb-uecuqv9w8HDv27vsoTWT76O3Z4frCPSDx9MSnlhArbiw2JbG4DHIsxwrn_LDQHr8MCWG0vYRns2nALXxwqfp8cQXURosxqOizKr3SR29tO77tw9k2R2BZEGQVoQmggtBqY0Th-GSRIWC2VhFoWSWaZnyyGp3m0VBKrnmWjnV86Zw9ibh_2EHHA5QLS9yc4gw8xMS5WIl7QIm6mw65iYUNAwZd5jkCNVBMcPp1wcYw5VOjv-QX6Cth_5TZ9hpdx9P0DYcBaRhaXyKalU5N2doUy2qbFae-wP8BAjPnD8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Big+Data+Analytics+and+Practices+%28IBDAP%29&rft.atitle=Real-time+prediction+of+free+lime+in+cement+clinker+using+support+vector+machine+algorithm&rft.au=Kannan%2C+Rathimala&rft.au=Ghanim%2C+Ahmad+Hanif&rft.au=Ramakrishnan%2C+Kannan&rft.au=More%2C+Satesh&rft.date=2023-08-25&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIBDAP58581.2023.10271990&rft.externalDocID=10271990