Real-time prediction of free lime in cement clinker using support vector machine algorithm
Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict absolute free lime content, using soft sensors data, with limited success due to the complexity of the clinker burning process. Subject matter exper...
Gespeichert in:
| Veröffentlicht in: | 2023 4th International Conference on Big Data Analytics and Practices (IBDAP) S. 1 - 4 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
25.08.2023
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict absolute free lime content, using soft sensors data, with limited success due to the complexity of the clinker burning process. Subject matter experts believe that, instead of predicting the free lime absolute value, predicting free lime quality as good, over-burn, or under-burn is more practically beneficial. This study aims to predict the free lime clinker quality as good or under-burn by leveraging data mining methods and machine learning techniques. Seven months of hourly data pertinent to rotary kiln feed chemistry and operation parameters were collected from a real operational cement plant. Classification models were built using support vector machine (SVM). The SVM produced a sensitivity value of 0.998 for good clinker class and 0.865 for under-burn class with an accuracy of 96%. The availability of these predictions in real time can help plant operators to avoid under-burning and over-burning. Such insights will assist relevant cement plants to reduce off-specification products, coal usage, production cost, and carbon emissions. |
|---|---|
| AbstractList | Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict absolute free lime content, using soft sensors data, with limited success due to the complexity of the clinker burning process. Subject matter experts believe that, instead of predicting the free lime absolute value, predicting free lime quality as good, over-burn, or under-burn is more practically beneficial. This study aims to predict the free lime clinker quality as good or under-burn by leveraging data mining methods and machine learning techniques. Seven months of hourly data pertinent to rotary kiln feed chemistry and operation parameters were collected from a real operational cement plant. Classification models were built using support vector machine (SVM). The SVM produced a sensitivity value of 0.998 for good clinker class and 0.865 for under-burn class with an accuracy of 96%. The availability of these predictions in real time can help plant operators to avoid under-burning and over-burning. Such insights will assist relevant cement plants to reduce off-specification products, coal usage, production cost, and carbon emissions. |
| Author | Ramakrishnan, Kannan More, Satesh Ghanim, Ahmad Hanif Kannan, Rathimala |
| Author_xml | – sequence: 1 givenname: Rathimala surname: Kannan fullname: Kannan, Rathimala email: rathimala.kannan@mmu.edu.my organization: Multimedia University,Faculty of Management,Department of Information Technology,Cyberjaya,Selangor,Malaysia – sequence: 2 givenname: Ahmad Hanif surname: Ghanim fullname: Ghanim, Ahmad Hanif email: ahmad.ghanim@ipmi.ac.id organization: IPMI International Business School,Jakarta,Indonesia – sequence: 3 givenname: Kannan surname: Ramakrishnan fullname: Ramakrishnan, Kannan email: kannan.ramakrishnan@mmu.edu.my organization: Multimedia University,Faculty of Computing and Informatics,Cyberjaya,Selangor,Malaysia – sequence: 4 givenname: Satesh surname: More fullname: More, Satesh email: satesh.more@cemindo.com organization: PT Cemindo Gemilang Tbk,Performance Management Technical Directorate,Jakarta,Indonesia |
| BookMark | eNo1j8tKxDAUQCPoQsf5Axf3B1rzaJpkOY6vgQFFdONmSNObmWCblDQj-Pci6urAWRw4F-Q0poiEAKM1Y9Rcb25uV89SS81qTrmoGeWKGUNPyNIoo4WkglJm-Dl5f0E7VCWMCFPGPrgSUoTkwWdEGH58iOBwxFjADSF-YIbjHOIe5uM0pVzgE11JGUbrDiEi2GGfciiH8ZKceTvMuPzjgrzd372uH6vt08NmvdpWgTFTKt5abS3nXrZGqbZ1wiovXSM65VXfGd34XgrdMNPpXveuUb2m1rSi01RJ1YgFufrtBkTcTTmMNn_t_pfFN-lsUb8 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IBDAP58581.2023.10271990 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350300192 |
| EndPage | 4 |
| ExternalDocumentID | 10271990 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-26a8aa22f5697766c3a7f5c43b7f7db984fd538419b8d8dc47d80a963b8075743 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 18 05:40:19 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-26a8aa22f5697766c3a7f5c43b7f7db984fd538419b8d8dc47d80a963b8075743 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10271990 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Aug.-25 |
| PublicationDateYYYYMMDD | 2023-08-25 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-Aug.-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 4th International Conference on Big Data Analytics and Practices (IBDAP) |
| PublicationTitleAbbrev | IBDAP |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8426137 |
| Snippet | Free lime content is an important quality parameter in the production of clinker, targeted between 0.5% to 1.5%. Existing studies have tried to predict... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Analytical models Cement industry Classification algorithms Clinker quality Data models Machine learning Predictive models Production Sensitivity Soft sensors Support vector machine Support vector machines |
| Title | Real-time prediction of free lime in cement clinker using support vector machine algorithm |
| URI | https://ieeexplore.ieee.org/document/10271990 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhN7Sa7SfboqyhIKaJSvJS8ti62u8t2299vJm0VDx68hRAIfGEm30zmyyB0KVXPeJqREk6pJbHRgugoyggVNBaWyUQHefTbkxgM5GiUDtdi9aCFcc6F4jPXhWF4y7elWUCqzFs4FZF3ny3UEoKvxFqb6pxeevV4c3c99PRXQtxHWXez_FfjlHBv9Hf_ueMe6vwo8PDw-27ZR1uuOEDvz57VEegGj6saHlgAVFxmOKudw1OYzwtsQsIPg-Tx09UYCtsneL6ogGjjZUjS41kooXRYTSdlnTcfsw567d-_3D6QdW8EkkdR2hDKlVSK0izhnsFxbpgSWWJipkUmrE5lnFnvy-Io1dJKazzwsqe8tWn4fdjThkPULsrCHSEswgJufKRkfbhEvUUn0jFFGRPSM5Jj1AFgxtXq-4vxBpOTP-ZP0Q7AD4lXmpyhdlMv3DnaNssmn9cX4dC-AOFcmPY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl5Tu9lHskdfxWItRaoULyXPutjulu22v99MbBUPHryFISEwYTLfTObLIHTJRVM5mJGShFJNIiUZkUFgCWU0YjrksfT06NcO63b5YJD2lmR1z4UxxvjiM9OAoX_L14WaQ6rMWThlgbs-19EGtM5a0rVW9TnN9Kp9c3fdcwCYQ-RHw8Zqwa_WKd5ztHb-uecuqv9w8HDv27vsoTWT76O3Z4frCPSDx9MSnlhArbiw2JbG4DHIsxwrn_LDQHr8MCWG0vYRns2nALXxwqfp8cQXURosxqOizKr3SR29tO77tw9k2R2BZEGQVoQmggtBqY0Th-GSRIWC2VhFoWSWaZnyyGp3m0VBKrnmWjnV86Zw9ibh_2EHHA5QLS9yc4gw8xMS5WIl7QIm6mw65iYUNAwZd5jkCNVBMcPp1wcYw5VOjv-QX6Cth_5TZ9hpdx9P0DYcBaRhaXyKalU5N2doUy2qbFae-wP8BAjPnD8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Big+Data+Analytics+and+Practices+%28IBDAP%29&rft.atitle=Real-time+prediction+of+free+lime+in+cement+clinker+using+support+vector+machine+algorithm&rft.au=Kannan%2C+Rathimala&rft.au=Ghanim%2C+Ahmad+Hanif&rft.au=Ramakrishnan%2C+Kannan&rft.au=More%2C+Satesh&rft.date=2023-08-25&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIBDAP58581.2023.10271990&rft.externalDocID=10271990 |