A Light-Weight Deep Learning Model for Remote Sensing Image Classification

In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the aerial scene of a remote sensing image. To this end, we first evaluate various benchmark convolutional neural network (CNN) architectures: Mob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2023 International Symposium on Image and Signal Processing and Analysis (ISPA) s. 1 - 6
Hlavní autori: Pham, Lam, Le, Cam, Ngo, Dat, Nguyen, Anh, Lampert, Jasmin, Schindler, Alexander, McLoughlin, Ian
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 18.09.2023
Predmet:
ISSN:1849-2266
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the aerial scene of a remote sensing image. To this end, we first evaluate various benchmark convolutional neural network (CNN) architectures: MobileNet V1/V2, ResNet 50/151V2, InceptionV3/InceptionResNetV2, EfficientNet B0/B7, DenseNet 121/201, ConNeXt Tiny/Large. Then, the best performing models are selected to train a compact model in a teacher-student arrangement. The knowledge distillation from the teacher aims to achieve high performance with significantly reduced complexity. By conducting extensive experiments on the NWPU-RESISC45 benchmark, our proposed teacher and student models outper-forms the state-of-the-art systems, and has potential to be applied on a wide range of edge devices.
AbstractList In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the aerial scene of a remote sensing image. To this end, we first evaluate various benchmark convolutional neural network (CNN) architectures: MobileNet V1/V2, ResNet 50/151V2, InceptionV3/InceptionResNetV2, EfficientNet B0/B7, DenseNet 121/201, ConNeXt Tiny/Large. Then, the best performing models are selected to train a compact model in a teacher-student arrangement. The knowledge distillation from the teacher aims to achieve high performance with significantly reduced complexity. By conducting extensive experiments on the NWPU-RESISC45 benchmark, our proposed teacher and student models outper-forms the state-of-the-art systems, and has potential to be applied on a wide range of edge devices.
Author McLoughlin, Ian
Nguyen, Anh
Pham, Lam
Lampert, Jasmin
Le, Cam
Ngo, Dat
Schindler, Alexander
Author_xml – sequence: 1
  givenname: Lam
  surname: Pham
  fullname: Pham, Lam
  email: lam.pham@ait.ac.at
  organization: Austrian Institute of Technology,Vienna,Austria
– sequence: 2
  givenname: Cam
  surname: Le
  fullname: Le, Cam
  email: cam.levt123@hcmut.edu.vn
  organization: HCM University of Technology, HCM,VietNam
– sequence: 3
  givenname: Dat
  surname: Ngo
  fullname: Ngo, Dat
  email: dn22678@essex.ac.uk
  organization: University of Essex,Colchester,UK
– sequence: 4
  givenname: Anh
  surname: Nguyen
  fullname: Nguyen, Anh
  email: AnhNTN34@fsoft.com.vn
  organization: FPT Soft Company, HCM,VietNam
– sequence: 5
  givenname: Jasmin
  surname: Lampert
  fullname: Lampert, Jasmin
  email: Jasmin.Lampert@ait.ac.at
  organization: Austrian Institute of Technology,Vienna,Austria
– sequence: 6
  givenname: Alexander
  surname: Schindler
  fullname: Schindler, Alexander
  email: Alexander.Schindler@ait.ac.at
  organization: Austrian Institute of Technology,Vienna,Austria
– sequence: 7
  givenname: Ian
  surname: McLoughlin
  fullname: McLoughlin, Ian
  email: ian.mcloughlin@singaporetech.edu.sg
  organization: Singapore Institute of Technology,Singapore
BookMark eNo1j11LhEAYhacoaNv8B0HzB7R559O5FGvLMIq26HIZ9dUG1nFRb_r3uVRXD5xzeOBckrMwBCTkBlgCwOxtsX3NVCoUJJxxkQDjxmpjT0hkjV1yJkAJLU7JClJpY861viDRNPmKyVQxuYxW5Cmjpe--5vgTj6B3iAdaohuDDx19Hhrc03YY6Rv2w4x0i2E6FkXvOqT53i261tdu9kO4Iuet208Y_XFNPjb37_ljXL48FHlWxh7AzjGHhrkWoEXJZIOmqjhzXEu0rK4NqwzXTqUWhDQtGqvqyqZaapAKFK8diDW5_vV6RNwdRt-78Xv3f1_8AAzKT6U
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA58351.2023.10279679
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350315363
EISSN 1849-2266
EndPage 6
ExternalDocumentID 10279679
Genre orig-research
GrantInformation_xml – fundername: Austrian Research Promotion Agency (FFG)
  funderid: 10.13039/501100004955
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i119t-21d0af11fe404de7bb20a264e90cc70b726a5891347fe795cb98646145152ca13
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:08 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-21d0af11fe404de7bb20a264e90cc70b726a5891347fe795cb98646145152ca13
PageCount 6
ParticipantIDs ieee_primary_10279679
PublicationCentury 2000
PublicationDate 2023-Sept.-18
PublicationDateYYYYMMDD 2023-09-18
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-18
  day: 18
PublicationDecade 2020
PublicationTitle 2023 International Symposium on Image and Signal Processing and Analysis (ISPA)
PublicationTitleAbbrev ISPA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504798
ssib042470063
Score 1.8596491
Snippet In this paper, we present a high-performance and light-weight deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Benchmark testing
Complexity theory
Computational modeling
convolutional neural network (CNN)
Convolutional neural networks
data augmentation
Deep learning
high-level features
Image edge detection
Teacher-student model
Title A Light-Weight Deep Learning Model for Remote Sensing Image Classification
URI https://ieeexplore.ieee.org/document/10279679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2EePCkRoyKmh68Fttuu90eiUrEEELED25k204NiQJB8PfblgXjwYO3_Ug2m5lt32z75j2ErozToswVEJDCEWG1JWXmJQnQq2kmjDRJrPqlp_r9YjTSg6pZPfXCAEAin0ErHqa9fDezq7hUFkY4VzpXuoZqSuXrZq3NxyO4UBFvt-eFjOrpRcXpYlRfd4eDtgwVR_wt5Flr87RfvioJVjr7_3yhA9T4adDDgy30HKIdmB6hhzbuJVmQ17TciW8B5rjST33D0fTsHYcSFT9CSA_gYaSuhxvdjzCl4GSOGWlDKVMN9Ny5e7q5J5VVApkwppeEM0dLz5gHQYUDZQynZah1QFNrFTWK52X0D8yE8qC0tCbKsufRpldyW7LsGNWnsymcIFyASWWXswH5uQhJVtSHqHngnpvCnaJGDMR4vlbDGG9icPbH9Sbai-GOHAtWnKP6crGCC7Rrv5aTz8VlyuE329SaQw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cCaYjtOHI8VULUQqooW6FbFzgVVgrQqLb8fn0mLGBjY8iFF0V3sd7HfvUfIpcm1zGIFAUQyD6TVNsjCIgoc9GoWShMZL1b9nKpuNxkOda9qVve9MADgyWfQwEO_l59P7AKXytwIF0rHSq-TDbTOqtq1lp-PFFIh4q7Okwj105OK1cWZvur0e83I1Rz4YyjCxvJ5v5xVPLC0dv75Sruk_tOiR3sr8Nkja1Duk7smTb0wyItf8KQ3AFNaKai-UrQ9e6OuSKWP4BIEtI_kdXej8-4mFertMZE45HNVJ0-t28F1O6jMEoIx53oeCJ6zrOC8AMlkDsoYwTJX7YBm1ipmlIgzdBAMpSpA6cgaFGaP0ag3Ejbj4QGplZMSDglNwPjCK7cO-4V0aVascFErQBTCJPkRqWMgRtNvPYzRMgbHf1y_IFvtwUM6Sjvd-xOyjaFHxgVPTkltPlvAGdm0n_Pxx-zc5_MLGZqdjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=A+Light-Weight+Deep+Learning+Model+for+Remote+Sensing+Image+Classification&rft.au=Pham%2C+Lam&rft.au=Le%2C+Cam&rft.au=Ngo%2C+Dat&rft.au=Nguyen%2C+Anh&rft.date=2023-09-18&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISPA58351.2023.10279679&rft.externalDocID=10279679