Effects of Initialization Methods on the Performance of Surrogate-Based Multiobjective Evolutionary Algorithms

Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, solutions are generated to train surrogate models. Consequently, the accuracy of thes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making s. 933 - 940
Hlavní autoři: Zhang, Jinyuan, Ishibuchi, Hisao, He, Linjun, Nan, Yang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2023
Témata:
ISSN:2472-8322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, solutions are generated to train surrogate models. Consequently, the accuracy of these surrogate models depends on the quality of the initial solutions, which in turn directly impacts the performance of surrogate-based MOEAs. Despite the widespread use of Latin hypercube sampling as an initialization method in surrogate-based MOEAs, there is a lack of comprehensive research examining the effectiveness of different initialization methods. Additionally, the impact of the number of initial solutions on the performance of surrogate-based MOEAs remains largely unexplored. This paper aims to bridge these research gaps by comparing the usefulness of two commonly employed initialization methods (i.e., random sampling and Latin hypercube sampling) in surrogate-based MOEAs. Furthermore, it investigates how varying the number of initial solutions influences the performance of surrogate-based MOEAs.
AbstractList Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, solutions are generated to train surrogate models. Consequently, the accuracy of these surrogate models depends on the quality of the initial solutions, which in turn directly impacts the performance of surrogate-based MOEAs. Despite the widespread use of Latin hypercube sampling as an initialization method in surrogate-based MOEAs, there is a lack of comprehensive research examining the effectiveness of different initialization methods. Additionally, the impact of the number of initial solutions on the performance of surrogate-based MOEAs remains largely unexplored. This paper aims to bridge these research gaps by comparing the usefulness of two commonly employed initialization methods (i.e., random sampling and Latin hypercube sampling) in surrogate-based MOEAs. Furthermore, it investigates how varying the number of initial solutions influences the performance of surrogate-based MOEAs.
Author Ishibuchi, Hisao
Nan, Yang
He, Linjun
Zhang, Jinyuan
Author_xml – sequence: 1
  givenname: Jinyuan
  surname: Zhang
  fullname: Zhang, Jinyuan
  email: zhangjy@sustech.edu.cn
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055
– sequence: 2
  givenname: Hisao
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisao@sustech.edu.cn
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055
– sequence: 3
  givenname: Linjun
  surname: He
  fullname: He, Linjun
  email: this.helj@gmail.com
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055
– sequence: 4
  givenname: Yang
  surname: Nan
  fullname: Nan, Yang
  email: nany@mail.sustech.edu.cn
  organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055
BookMark eNo1kNFOAjEQRavRRET-wMT-wGKn7Xa7j0hQSSCaoM-ktlMoWbZmt5Do11uivtx5uHdOZu41uWhji4TcARsDsPp-tZrOSw6yGnPGxRiYqEAzdUZGdaVBqVIKluWcDLiseKEF51dk1Pc7xhgoUKKSA9LOvEebeho9nbchBdOEb5NCbOkS0za67LQ0bZG-YudjtzetxVN4dei6uDEJiwfTo6PLQ5O3PnYZFo5IZ8fYHE4Y033RSbOJXUjbfX9DLr1pehz9zSF5f5y9TZ-LxcvTfDpZFAGgTgVgjdrUHiwqq1wpneK6ctYpBCktM1xYdKC4K0V-o8wx76zU1ldaoNFiSG5_uQER159d2Oc71v8ViR-UB1_h
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI52147.2023.10371806
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665430654
1665430656
EISSN 2472-8322
EndPage 940
ExternalDocumentID 10371806
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62106099,62250710163,62250710682
  funderid: 10.13039/501100001809
– fundername: Guangdong Provincial Key Laboratory
  grantid: 2020B121201001
  funderid: 10.13039/100013261
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-1e9e8a9f1ce6c6d54d6287dcd6e144c0a23ced162d533745ce6fdc48cf783ea83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1e9e8a9f1ce6c6d54d6287dcd6e144c0a23ced162d533745ce6fdc48cf783ea83
PageCount 8
ParticipantIDs ieee_primary_10371806
PublicationCentury 2000
PublicationDate 2023-Dec.-5
PublicationDateYYYYMMDD 2023-12-05
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making
PublicationTitleAbbrev SSCI
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001616374
ssib053788446
Score 1.8529626
Snippet Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective...
SourceID ieee
SourceType Publisher
StartPage 933
SubjectTerms Bridges
Classification algorithms
Computational modeling
Evolutionary computation
Hypercubes
initialization
Measurement
Multiobjective evolutionary algorithms
Optimization
surrogate models
Title Effects of Initialization Methods on the Performance of Surrogate-Based Multiobjective Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/10371806
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmAqH0V8ywNr2sSJ7WSEqhUdqCoVpG6VY5-hVUmqNK3Ev8d2EioGBrbIsSLLPufu7HvvIfRAwHK6mJ0GOvS9SBDuJSkjHqHWhpybVk5sgo_H8WyWTGqwusPCAIArPoOufXR3-SqXW3tU1rOYtiC2BNuHnLMKrNUYD7XE6E1us6xCGRbyqK7pCvykN532R9Tq8nStZni3-dovXRXnVobtfw7oBHX2AD08-XE9p-gAsjPUbhQacL1hz1FWkRNvcK7xyJYJiVWNu8QvTjravMmwiQHxZA8gsJ2n26LI7Qmb92TcnMIOp5uny-r3iAe72mJF8YUfV-95sSg_Pjcd9DYcvPafvVphwVsEQVJ6ASQQi0QHEphkikaKmQxKScXAJFrSFySUoAJGlIkKeURNN61kFEvN4xBEHF6gVpZncIkwIyKlmss45TQSJhg2abcCEmrKUp9JfYU6dv7m64pEY95M3fUf7Tfo2K6Sqxyht6hVFlu4Q0dyVy42xb1b-m8_cq_C
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBT3Nj4nf5uC1W5smaXvU4dhwG4NN2G2kyatuzFa6D_C_N0lbhwcP3kITSkle-t5L3u_3Q-iBgOF00TsNEt91qCCBE8WcOIQZG7JuWlmxiWA4DKfTaFSC1S0WBgBs8Rk0TdPe5atMbsxRWctg2rzQEGzvM0qJW8C1KvNhhhq9ym4WRTDD_YCWVV2eG7XG43aPGWWeplENb1bv-6WsYh1Lp_7PTzpGjR1ED49-nM8J2oP0FNUrjQZcbtkzlBb0xCucJbhnCoXEskRe4oEVj9Y9KdZRIB7tIARm8HiT55k5Y3OetKNT2CJ1s3hR_CDx87a0WZF_4cflW5bP1-8fqwZ67TxP2l2n1Fhw5p4XrR0PIghFlHgSuOSKUcV1DqWk4qBTLekK4ktQHidKx4UBZXpYoiQNZRKEPojQP0e1NEvhAmFORMySQIZxwKjQ4bBOvBUQP2E8drlMLlHDzN_ss6DRmFVTd_XH83t02J0M-rN-b_hyjY7Mitk6EnaDaut8A7foQG7X81V-Z83gG432swk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Symposium+on+Computational+Intelligence+in+Multi-Criteria+Decision+Making&rft.atitle=Effects+of+Initialization+Methods+on+the+Performance+of+Surrogate-Based+Multiobjective+Evolutionary+Algorithms&rft.au=Zhang%2C+Jinyuan&rft.au=Ishibuchi%2C+Hisao&rft.au=He%2C+Linjun&rft.au=Nan%2C+Yang&rft.date=2023-12-05&rft.pub=IEEE&rft.eissn=2472-8322&rft.spage=933&rft.epage=940&rft_id=info:doi/10.1109%2FSSCI52147.2023.10371806&rft.externalDocID=10371806