Effects of Initialization Methods on the Performance of Surrogate-Based Multiobjective Evolutionary Algorithms
Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, solutions are generated to train surrogate models. Consequently, the accuracy of thes...
Uloženo v:
| Vydáno v: | IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making s. 933 - 940 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
05.12.2023
|
| Témata: | |
| ISSN: | 2472-8322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, solutions are generated to train surrogate models. Consequently, the accuracy of these surrogate models depends on the quality of the initial solutions, which in turn directly impacts the performance of surrogate-based MOEAs. Despite the widespread use of Latin hypercube sampling as an initialization method in surrogate-based MOEAs, there is a lack of comprehensive research examining the effectiveness of different initialization methods. Additionally, the impact of the number of initial solutions on the performance of surrogate-based MOEAs remains largely unexplored. This paper aims to bridge these research gaps by comparing the usefulness of two commonly employed initialization methods (i.e., random sampling and Latin hypercube sampling) in surrogate-based MOEAs. Furthermore, it investigates how varying the number of initial solutions influences the performance of surrogate-based MOEAs. |
|---|---|
| AbstractList | Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, solutions are generated to train surrogate models. Consequently, the accuracy of these surrogate models depends on the quality of the initial solutions, which in turn directly impacts the performance of surrogate-based MOEAs. Despite the widespread use of Latin hypercube sampling as an initialization method in surrogate-based MOEAs, there is a lack of comprehensive research examining the effectiveness of different initialization methods. Additionally, the impact of the number of initial solutions on the performance of surrogate-based MOEAs remains largely unexplored. This paper aims to bridge these research gaps by comparing the usefulness of two commonly employed initialization methods (i.e., random sampling and Latin hypercube sampling) in surrogate-based MOEAs. Furthermore, it investigates how varying the number of initial solutions influences the performance of surrogate-based MOEAs. |
| Author | Ishibuchi, Hisao Nan, Yang He, Linjun Zhang, Jinyuan |
| Author_xml | – sequence: 1 givenname: Jinyuan surname: Zhang fullname: Zhang, Jinyuan email: zhangjy@sustech.edu.cn organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055 – sequence: 2 givenname: Hisao surname: Ishibuchi fullname: Ishibuchi, Hisao email: hisao@sustech.edu.cn organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055 – sequence: 3 givenname: Linjun surname: He fullname: He, Linjun email: this.helj@gmail.com organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055 – sequence: 4 givenname: Yang surname: Nan fullname: Nan, Yang email: nany@mail.sustech.edu.cn organization: Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China,518055 |
| BookMark | eNo1kNFOAjEQRavRRET-wMT-wGKn7Xa7j0hQSSCaoM-ktlMoWbZmt5Do11uivtx5uHdOZu41uWhji4TcARsDsPp-tZrOSw6yGnPGxRiYqEAzdUZGdaVBqVIKluWcDLiseKEF51dk1Pc7xhgoUKKSA9LOvEebeho9nbchBdOEb5NCbOkS0za67LQ0bZG-YudjtzetxVN4dei6uDEJiwfTo6PLQ5O3PnYZFo5IZ8fYHE4Y033RSbOJXUjbfX9DLr1pehz9zSF5f5y9TZ-LxcvTfDpZFAGgTgVgjdrUHiwqq1wpneK6ctYpBCktM1xYdKC4K0V-o8wx76zU1ldaoNFiSG5_uQER159d2Oc71v8ViR-UB1_h |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SSCI52147.2023.10371806 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665430654 1665430656 |
| EISSN | 2472-8322 |
| EndPage | 940 |
| ExternalDocumentID | 10371806 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62106099,62250710163,62250710682 funderid: 10.13039/501100001809 – fundername: Guangdong Provincial Key Laboratory grantid: 2020B121201001 funderid: 10.13039/100013261 |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-1e9e8a9f1ce6c6d54d6287dcd6e144c0a23ced162d533745ce6fdc48cf783ea83 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:30:18 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-1e9e8a9f1ce6c6d54d6287dcd6e144c0a23ced162d533745ce6fdc48cf783ea83 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10371806 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Dec.-5 |
| PublicationDateYYYYMMDD | 2023-12-05 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making |
| PublicationTitleAbbrev | SSCI |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001616374 ssib053788446 |
| Score | 1.8529626 |
| Snippet | Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 933 |
| SubjectTerms | Bridges Classification algorithms Computational modeling Evolutionary computation Hypercubes initialization Measurement Multiobjective evolutionary algorithms Optimization surrogate models |
| Title | Effects of Initialization Methods on the Performance of Surrogate-Based Multiobjective Evolutionary Algorithms |
| URI | https://ieeexplore.ieee.org/document/10371806 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmAqH0V8ywNr2sSJ7WSEqhUdqCoVpG6VY5-hVUmqNK3Ev8d2EioGBrbIsSLLPufu7HvvIfRAwHK6mJ0GOvS9SBDuJSkjHqHWhpybVk5sgo_H8WyWTGqwusPCAIArPoOufXR3-SqXW3tU1rOYtiC2BNuHnLMKrNUYD7XE6E1us6xCGRbyqK7pCvykN532R9Tq8nStZni3-dovXRXnVobtfw7oBHX2AD08-XE9p-gAsjPUbhQacL1hz1FWkRNvcK7xyJYJiVWNu8QvTjravMmwiQHxZA8gsJ2n26LI7Qmb92TcnMIOp5uny-r3iAe72mJF8YUfV-95sSg_Pjcd9DYcvPafvVphwVsEQVJ6ASQQi0QHEphkikaKmQxKScXAJFrSFySUoAJGlIkKeURNN61kFEvN4xBEHF6gVpZncIkwIyKlmss45TQSJhg2abcCEmrKUp9JfYU6dv7m64pEY95M3fUf7Tfo2K6Sqxyht6hVFlu4Q0dyVy42xb1b-m8_cq_C |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBT3Nj4nf5uC1W5smaXvU4dhwG4NN2G2kyatuzFa6D_C_N0lbhwcP3kITSkle-t5L3u_3Q-iBgOF00TsNEt91qCCBE8WcOIQZG7JuWlmxiWA4DKfTaFSC1S0WBgBs8Rk0TdPe5atMbsxRWctg2rzQEGzvM0qJW8C1KvNhhhq9ym4WRTDD_YCWVV2eG7XG43aPGWWeplENb1bv-6WsYh1Lp_7PTzpGjR1ED49-nM8J2oP0FNUrjQZcbtkzlBb0xCucJbhnCoXEskRe4oEVj9Y9KdZRIB7tIARm8HiT55k5Y3OetKNT2CJ1s3hR_CDx87a0WZF_4cflW5bP1-8fqwZ67TxP2l2n1Fhw5p4XrR0PIghFlHgSuOSKUcV1DqWk4qBTLekK4ktQHidKx4UBZXpYoiQNZRKEPojQP0e1NEvhAmFORMySQIZxwKjQ4bBOvBUQP2E8drlMLlHDzN_ss6DRmFVTd_XH83t02J0M-rN-b_hyjY7Mitk6EnaDaut8A7foQG7X81V-Z83gG432swk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Symposium+on+Computational+Intelligence+in+Multi-Criteria+Decision+Making&rft.atitle=Effects+of+Initialization+Methods+on+the+Performance+of+Surrogate-Based+Multiobjective+Evolutionary+Algorithms&rft.au=Zhang%2C+Jinyuan&rft.au=Ishibuchi%2C+Hisao&rft.au=He%2C+Linjun&rft.au=Nan%2C+Yang&rft.date=2023-12-05&rft.pub=IEEE&rft.eissn=2472-8322&rft.spage=933&rft.epage=940&rft_id=info:doi/10.1109%2FSSCI52147.2023.10371806&rft.externalDocID=10371806 |