Network Intrusion Detection System Using Deep Learning Method with KDD Cup'99 Dataset

This work is a deep sparse autoencoder network intrusion detection system which addresses the issue of interpretability of L2 regularization technique used in other works. The proposed model was trained using a mini-batch gradient descent technique, L1 regularization technique and ReLU activation fu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE International Symposium on Embedded Multicore/Manycore SoCs. Online) s. 251 - 255
Hlavní autori: Tanimu, Jesse Jeremiah, Hamada, Mohamed, Robert, Patience, Mahendran, Anand
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2022
Predmet:
ISSN:2771-3075
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work is a deep sparse autoencoder network intrusion detection system which addresses the issue of interpretability of L2 regularization technique used in other works. The proposed model was trained using a mini-batch gradient descent technique, L1 regularization technique and ReLU activation function to arrive at a better performance. Results based on the KDDCUP'99 dataset show that our approach provides significant performance improvements over other deep sparse autoencoder Network Intrusion Detection Systems.
AbstractList This work is a deep sparse autoencoder network intrusion detection system which addresses the issue of interpretability of L2 regularization technique used in other works. The proposed model was trained using a mini-batch gradient descent technique, L1 regularization technique and ReLU activation function to arrive at a better performance. Results based on the KDDCUP'99 dataset show that our approach provides significant performance improvements over other deep sparse autoencoder Network Intrusion Detection Systems.
Author Tanimu, Jesse Jeremiah
Robert, Patience
Hamada, Mohamed
Mahendran, Anand
Author_xml – sequence: 1
  givenname: Jesse Jeremiah
  surname: Tanimu
  fullname: Tanimu, Jesse Jeremiah
  email: tanimujessej@gmail.com
  organization: Bayero University, Kano,Dept. Of Computer Science,Kano,Nigeria
– sequence: 2
  givenname: Mohamed
  surname: Hamada
  fullname: Hamada, Mohamed
  email: hamada@u-aizu.ac.jp
  organization: University of Aizu,Software Engineering Lab.,Aizu,Japan
– sequence: 3
  givenname: Patience
  surname: Robert
  fullname: Robert, Patience
  email: robertpatience44@gmail.com
  organization: Federal Polytechnic, Bali,Department of Computer Science,Bali,Nigeria
– sequence: 4
  givenname: Anand
  surname: Mahendran
  fullname: Mahendran, Anand
  email: amahendran@hse.ru
  organization: Higher School of Economics,Theoretical Computer Science Lab.,Moscow Moscow,Russia
BookMark eNotj01PwkAYhFejiYD8A0325qm47350-x5N6wcR9ICcyXb7VqrSku4Swr8XoqeZeTKZZIbsou1aYuwWxARA4P08X3S5sSpVEymknAghtD1jQ0hTo1ONKM_ZQFoLiRLWXLFxCF_HjpJCi8wM2PKN4r7rv_m0jf0uNF3LC4rk48ktDiHShi9D034eMW35jFzfntKc4rqr-L6Ja_5aFDzfbe8QeeGiCxSv2WXtfgKN_3XElk-PH_lLMnt_nuYPs6QBwJhA5avM6wxSAvSIvgR0xoL2PqtAYWUNlLVIUaMggaaqEYxWUmstlfOlGrGbv92GiFbbvtm4_rCC48FMG1S_9eNSSA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MCSoC57363.2022.00047
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665464992
9781665464994
EISSN 2771-3075
EndPage 255
ExternalDocumentID 10008459
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-1dcd8c4816e19c99cb19a5714cc8d139d751bf069490e095df91543244423acb3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:08:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1dcd8c4816e19c99cb19a5714cc8d139d751bf069490e095df91543244423acb3
PageCount 5
ParticipantIDs ieee_primary_10008459
PublicationCentury 2000
PublicationDate 2022-Dec.
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Symposium on Embedded Multicore/Manycore SoCs. Online)
PublicationTitleAbbrev MCSOC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204085
Score 1.8437281
Snippet This work is a deep sparse autoencoder network intrusion detection system which addresses the issue of interpretability of L2 regularization technique used in...
SourceID ieee
SourceType Publisher
StartPage 251
SubjectTerms Activation function
Autoencoder
Deep learning
Intrusion detection
Multicore processing
Network intrusion detection
Regularization
Softmax and Sparse Autoencoder
Title Network Intrusion Detection System Using Deep Learning Method with KDD Cup'99 Dataset
URI https://ieeexplore.ieee.org/document/10008459
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQALX0V8ywMSk2mcOLU9J1QgaFUJKnWrEvuCuqQVpPx-znYoMDCwWTfY0nm45_N77wi5LgsZGy0tw5eXYIJbzhTWaaasgjhVcQHBxPVJjsdqNtOTVqzutTAA4MlncOuW_i_fLs3atcr6rheNO-kO6Ug5CGKtTUMliSPn1tWqdHik-6PseZmlMhkk-A6MgzHn7ykqvogM9_55_D7pfcvx6GRTaA7IFtSHZPeHk-ARmY4DnZs-1E5FgcmmOTSeZlXT4EpOPTsAw7CiravqKx35AdLUdWPpY57TbL260ZrmRYPVremR6fDuJbtn7cQEtuBcN4xbJ_UXig-Aa6O1KbkuUsmFMcoi1rMy5WXltK46AgRXttIIoRBTCURVhSmTY9KtlzWcECpEZG2ZCm7SSFQACjggmJQVhiQk5SnpuQzNV8EUY_6VnLM_4udkx11CYIJckC4mAy7JtvloFu9vV_4qPwHs752c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQQIWvor4xgMSUyBOnNqeE6pWbaNKtFK3KrEvqEtaQcrvx3ZCgYGBLbohip6He7689w7gPs94oCTXnrl5MY9RTT1h-rQntMAgEkGGdYjrkKepmM3kuDGrOy8MIjrxGT7aR_cvXy_V2o7Knuws2rxJbsNOxFjg13atzUglDHyb19X4dKgvn0bxyzKOeNgJzU0wqKM5f-9RcW2ke_jPDziC9rchj4w3reYYtrA8gYMfWYKnME1rQTfpl9ZHYeAmCVZOaFWSOpecOH2AKeOKNLmqr2TkVkgTO48lgyQh8Xr1ICVJssr0t6oN0-7zJO55zc4Eb0GprDyqrdmfCdpBKpWUKqcyizhlSglt2J7mEc0L63aVPhp6pQtpSJRhVQbPMFN5eAatclniORDGfK3ziFEV-axAFEjR0ElemBLHML-AtkVovqpjMeZf4Fz-Ub-Dvd5kNJwP--ngCvbtgdS6kGtoGWDwBnbVR7V4f7t1x_oJUT2g4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Symposium+on+Embedded+Multicore%2FManycore+SoCs.+Online%29&rft.atitle=Network+Intrusion+Detection+System+Using+Deep+Learning+Method+with+KDD+Cup%2799+Dataset&rft.au=Tanimu%2C+Jesse+Jeremiah&rft.au=Hamada%2C+Mohamed&rft.au=Robert%2C+Patience&rft.au=Mahendran%2C+Anand&rft.date=2022-12-01&rft.pub=IEEE&rft.eissn=2771-3075&rft.spage=251&rft.epage=255&rft_id=info:doi/10.1109%2FMCSoC57363.2022.00047&rft.externalDocID=10008459