A Runtime-Efficient Multi-Object Tracking Approach for Automotive Perception Systems

There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation requires an enhanced environment perception system. The automotive smart sensors detecting the surrounding objects are usually subject to various un...

Full description

Saved in:
Bibliographic Details
Published in:SACI (International Symposium on Applied Computational Intelligence and Informatics. Online) pp. 000785 - 000792
Main Authors: Lindenmaier, Laszlo, Czibere, Balazs, Aradi, Szilard, Becsi, Tamas
Format: Conference Proceeding
Language:English
Published: IEEE 23.05.2023
Subjects:
ISSN:2765-818X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation requires an enhanced environment perception system. The automotive smart sensors detecting the surrounding objects are usually subject to various uncertainties. Objects are sometimes misdetected, false detections may also occur, and the sensor measurements are noisy. Multi-object tracking algorithms aim to compensate for these uncertainties, estimating precisely and continuously the state of surrounding objects. The real-time execution of these algorithms is crucial in automotive applications. This paper presents an improved runtime-efficient local nearest neighbor-based approach. The performance metrics of the proposed method get close to the state-of-the-art algorithms, besides having significantly lower computational complexity.
AbstractList There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation requires an enhanced environment perception system. The automotive smart sensors detecting the surrounding objects are usually subject to various uncertainties. Objects are sometimes misdetected, false detections may also occur, and the sensor measurements are noisy. Multi-object tracking algorithms aim to compensate for these uncertainties, estimating precisely and continuously the state of surrounding objects. The real-time execution of these algorithms is crucial in automotive applications. This paper presents an improved runtime-efficient local nearest neighbor-based approach. The performance metrics of the proposed method get close to the state-of-the-art algorithms, besides having significantly lower computational complexity.
Author Czibere, Balazs
Becsi, Tamas
Lindenmaier, Laszlo
Aradi, Szilard
Author_xml – sequence: 1
  givenname: Laszlo
  surname: Lindenmaier
  fullname: Lindenmaier, Laszlo
  email: lindenmaier.laszlo@kjk.bme.hu
  organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary
– sequence: 2
  givenname: Balazs
  surname: Czibere
  fullname: Czibere, Balazs
  email: cziberebalazs@edu.bme.hu
  organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary
– sequence: 3
  givenname: Szilard
  surname: Aradi
  fullname: Aradi, Szilard
  email: aradi.szilard@kjk.bme.hu
  organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary
– sequence: 4
  givenname: Tamas
  surname: Becsi
  fullname: Becsi, Tamas
  email: becsi.tamas@kjk.bme.hu
  organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary
BookMark eNo1kM1KAzEURqMoWGvfQDAvMPXmZmaSLIdStVCp2AruyiS90dTODzMZoW-v-LP6FudwFt8lO6ubmhi7ETAVAsztupgtMo25mSKgnAoQmc5SPGETo4yWGUj89tJTNkKVZ4kW-vWCTfp-D_CDco0jtin481DHUFEy9z64QHXkj8MhhmRl9-Qi33Sl-wj1Gy_atmtK98590_FiiE3VxPBJ_Ik6R20MTc3Xxz5S1V-xc18eepr87Zi93M03s4dkubpfzIplEoQwMRFOOkyznXJGpDtDJUKpSTuy6J0CZU1KVliLqKX0IAFz8t5qCQpS5aQcs-vfbiCibduFquyO2_8j5BdyElTO
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SACI58269.2023.10158542
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350321104
EISSN 2765-818X
EndPage 000792
ExternalDocumentID 10158542
Genre orig-research
GrantInformation_xml – fundername: Innovation Fund
  funderid: 10.13039/100017413
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-1c3c245d7c914d9ea20a8e8ceb2fc707b94eb1bb22833f03026effb8307047c33
IEDL.DBID RIE
IngestDate Wed Aug 27 02:19:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1c3c245d7c914d9ea20a8e8ceb2fc707b94eb1bb22833f03026effb8307047c33
PageCount 8
ParticipantIDs ieee_primary_10158542
PublicationCentury 2000
PublicationDate 2023-May-23
PublicationDateYYYYMMDD 2023-05-23
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-23
  day: 23
PublicationDecade 2020
PublicationTitle SACI (International Symposium on Applied Computational Intelligence and Informatics. Online)
PublicationTitleAbbrev SACI
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211682
Score 1.8327209
Snippet There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation...
SourceID ieee
SourceType Publisher
StartPage 000785
SubjectTerms Automation
Automotive applications
Computational complexity
Environment perception
Informatics
Multi-object tracking
Nearest neighbor methods
Noise measurement
Object detection
Real-time systems
Uncertainty
Title A Runtime-Efficient Multi-Object Tracking Approach for Automotive Perception Systems
URI https://ieeexplore.ieee.org/document/10158542
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aXLiqj4pvsnCbOpOkeSyH0qIgtWiV7sokuYEubKXO9PtN0mnFhQt3Q2BmQsLJfeSecxG66_nMOOcjuz2AnDvDSeR_EsGFdzJ3rkz8ivcnORqp6VSPG7J64sIAQCo-g258THf5bmnrmCoLCM-Dd8vDibsvpdiQtXYJFRZCGaFoU8OVZ_r-teg_9oL7HPkolHW3b__qo5LMyLD9zwkcoc4PIQ-Pd6bmGO3B4gS1tx0ZcAPQUzQp8Evs_fABZJC0IcLncOLYkmcTMy442CYbs-O4aMTEcfBacVFXqSpvHX6zq3TBjZp5B70NB5P-A2n6JpB5nuuK5JZZyntOWp1zp6GkWalA2RBEeyszaTQPJ7QxUfmG-YByKsB7oyL8ubSMnaHWYrmAc4RDOKUclaKkkHEvvXYcpLDKaGZKQeECdeIqzT430hiz7QJd_jF-hQ7jXsTrd8quUata1XCDDuy6mn-tbtOGfgPJVKG0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxGG0MmugJF4y7PXgtzrSly3FCIBARiaLhRqZbwkEwOPD7bWvBePDgbTLJLGnzrf3eewDctVymjHEB3e6NnBpFUcB_IkaZMzw3poz4ircBHw7FZCJHCawesTDW2jh8ZpvhMp7lm4VehVaZt_DcZ7fUe9zdIJ2V4FrblgrxxQwTOE1x5Zm8fyna_ZZPoAMiBZPm5vlfSioxkHTr__yFQ9D4geTB0TbYHIEdOz8G9Y0mA0wmegLGBXwO6g_vFnUiO4R_HYwoW_SkQs8F-uikQ38cFolOHPq8FRarKs7lrf1ntrMuMPGZN8BrtzNu91BSTkCzPJcVyjXRmLYM1zKnRtoSZ6WwQvsy2mmecSWp99FKBe4b4rydY2adUyI4AMo1IaegNl_M7RmAvqASBnNWYptRx5001HKmhZJElQzbc9AIqzT9-CbHmG4W6OKP-7dgvzd-HEwH_eHDJTgI-xIO4zG5ArVqubLXYE-vq9nn8iZu7hdlZ6T9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SACI+%28International+Symposium+on+Applied+Computational+Intelligence+and+Informatics.+Online%29&rft.atitle=A+Runtime-Efficient+Multi-Object+Tracking+Approach+for+Automotive+Perception+Systems&rft.au=Lindenmaier%2C+Laszlo&rft.au=Czibere%2C+Balazs&rft.au=Aradi%2C+Szilard&rft.au=Becsi%2C+Tamas&rft.date=2023-05-23&rft.pub=IEEE&rft.eissn=2765-818X&rft.spage=000785&rft.epage=000792&rft_id=info:doi/10.1109%2FSACI58269.2023.10158542&rft.externalDocID=10158542