A Runtime-Efficient Multi-Object Tracking Approach for Automotive Perception Systems
There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation requires an enhanced environment perception system. The automotive smart sensors detecting the surrounding objects are usually subject to various un...
Saved in:
| Published in: | SACI (International Symposium on Applied Computational Intelligence and Informatics. Online) pp. 000785 - 000792 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
23.05.2023
|
| Subjects: | |
| ISSN: | 2765-818X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation requires an enhanced environment perception system. The automotive smart sensors detecting the surrounding objects are usually subject to various uncertainties. Objects are sometimes misdetected, false detections may also occur, and the sensor measurements are noisy. Multi-object tracking algorithms aim to compensate for these uncertainties, estimating precisely and continuously the state of surrounding objects. The real-time execution of these algorithms is crucial in automotive applications. This paper presents an improved runtime-efficient local nearest neighbor-based approach. The performance metrics of the proposed method get close to the state-of-the-art algorithms, besides having significantly lower computational complexity. |
|---|---|
| AbstractList | There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation requires an enhanced environment perception system. The automotive smart sensors detecting the surrounding objects are usually subject to various uncertainties. Objects are sometimes misdetected, false detections may also occur, and the sensor measurements are noisy. Multi-object tracking algorithms aim to compensate for these uncertainties, estimating precisely and continuously the state of surrounding objects. The real-time execution of these algorithms is crucial in automotive applications. This paper presents an improved runtime-efficient local nearest neighbor-based approach. The performance metrics of the proposed method get close to the state-of-the-art algorithms, besides having significantly lower computational complexity. |
| Author | Czibere, Balazs Becsi, Tamas Lindenmaier, Laszlo Aradi, Szilard |
| Author_xml | – sequence: 1 givenname: Laszlo surname: Lindenmaier fullname: Lindenmaier, Laszlo email: lindenmaier.laszlo@kjk.bme.hu organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary – sequence: 2 givenname: Balazs surname: Czibere fullname: Czibere, Balazs email: cziberebalazs@edu.bme.hu organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary – sequence: 3 givenname: Szilard surname: Aradi fullname: Aradi, Szilard email: aradi.szilard@kjk.bme.hu organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary – sequence: 4 givenname: Tamas surname: Becsi fullname: Becsi, Tamas email: becsi.tamas@kjk.bme.hu organization: Budapest University of Technology and Economics,Dept. of Control for Transportation and Vehicle Systems,Budapest,Hungary |
| BookMark | eNo1kM1KAzEURqMoWGvfQDAvMPXmZmaSLIdStVCp2AruyiS90dTODzMZoW-v-LP6FudwFt8lO6ubmhi7ETAVAsztupgtMo25mSKgnAoQmc5SPGETo4yWGUj89tJTNkKVZ4kW-vWCTfp-D_CDco0jtin481DHUFEy9z64QHXkj8MhhmRl9-Qi33Sl-wj1Gy_atmtK98590_FiiE3VxPBJ_Ik6R20MTc3Xxz5S1V-xc18eepr87Zi93M03s4dkubpfzIplEoQwMRFOOkyznXJGpDtDJUKpSTuy6J0CZU1KVliLqKX0IAFz8t5qCQpS5aQcs-vfbiCibduFquyO2_8j5BdyElTO |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SACI58269.2023.10158542 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350321104 |
| EISSN | 2765-818X |
| EndPage | 000792 |
| ExternalDocumentID | 10158542 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Innovation Fund funderid: 10.13039/100017413 |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-1c3c245d7c914d9ea20a8e8ceb2fc707b94eb1bb22833f03026effb8307047c33 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:19:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-1c3c245d7c914d9ea20a8e8ceb2fc707b94eb1bb22833f03026effb8307047c33 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10158542 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May-23 |
| PublicationDateYYYYMMDD | 2023-05-23 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | SACI (International Symposium on Applied Computational Intelligence and Informatics. Online) |
| PublicationTitleAbbrev | SACI |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211682 |
| Score | 1.8327209 |
| Snippet | There is an increasing demand for fully autonomous driving with the spread of advanced driver assistance systems. However, a higher level of automation... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 000785 |
| SubjectTerms | Automation Automotive applications Computational complexity Environment perception Informatics Multi-object tracking Nearest neighbor methods Noise measurement Object detection Real-time systems Uncertainty |
| Title | A Runtime-Efficient Multi-Object Tracking Approach for Automotive Perception Systems |
| URI | https://ieeexplore.ieee.org/document/10158542 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aXLiqj4pvsnCbOpOkeSyH0qIgtWiV7sokuYEubKXO9PtN0mnFhQt3Q2BmQsLJfeSecxG66_nMOOcjuz2AnDvDSeR_EsGFdzJ3rkz8ivcnORqp6VSPG7J64sIAQCo-g258THf5bmnrmCoLCM-Dd8vDibsvpdiQtXYJFRZCGaFoU8OVZ_r-teg_9oL7HPkolHW3b__qo5LMyLD9zwkcoc4PIQ-Pd6bmGO3B4gS1tx0ZcAPQUzQp8Evs_fABZJC0IcLncOLYkmcTMy442CYbs-O4aMTEcfBacVFXqSpvHX6zq3TBjZp5B70NB5P-A2n6JpB5nuuK5JZZyntOWp1zp6GkWalA2RBEeyszaTQPJ7QxUfmG-YByKsB7oyL8ubSMnaHWYrmAc4RDOKUclaKkkHEvvXYcpLDKaGZKQeECdeIqzT430hiz7QJd_jF-hQ7jXsTrd8quUata1XCDDuy6mn-tbtOGfgPJVKG0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxGG0MmugJF4y7PXgtzrSly3FCIBARiaLhRqZbwkEwOPD7bWvBePDgbTLJLGnzrf3eewDctVymjHEB3e6NnBpFUcB_IkaZMzw3poz4ircBHw7FZCJHCawesTDW2jh8ZpvhMp7lm4VehVaZt_DcZ7fUe9zdIJ2V4FrblgrxxQwTOE1x5Zm8fyna_ZZPoAMiBZPm5vlfSioxkHTr__yFQ9D4geTB0TbYHIEdOz8G9Y0mA0wmegLGBXwO6g_vFnUiO4R_HYwoW_SkQs8F-uikQ38cFolOHPq8FRarKs7lrf1ntrMuMPGZN8BrtzNu91BSTkCzPJcVyjXRmLYM1zKnRtoSZ6WwQvsy2mmecSWp99FKBe4b4rydY2adUyI4AMo1IaegNl_M7RmAvqASBnNWYptRx5001HKmhZJElQzbc9AIqzT9-CbHmG4W6OKP-7dgvzd-HEwH_eHDJTgI-xIO4zG5ArVqubLXYE-vq9nn8iZu7hdlZ6T9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SACI+%28International+Symposium+on+Applied+Computational+Intelligence+and+Informatics.+Online%29&rft.atitle=A+Runtime-Efficient+Multi-Object+Tracking+Approach+for+Automotive+Perception+Systems&rft.au=Lindenmaier%2C+Laszlo&rft.au=Czibere%2C+Balazs&rft.au=Aradi%2C+Szilard&rft.au=Becsi%2C+Tamas&rft.date=2023-05-23&rft.pub=IEEE&rft.eissn=2765-818X&rft.spage=000785&rft.epage=000792&rft_id=info:doi/10.1109%2FSACI58269.2023.10158542&rft.externalDocID=10158542 |