Optimizing parameters of robotic task-oriented programming via a multiphysics simulation

The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused extensively on the development of intuitive programming methods.This article proposes a framework for task-oriented programming introducing an i...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) pp. 1 - 4
Main Authors: Delledonne, Michele, Villagrossi, Enrico, Beschi, Manuel
Format: Conference Proceeding
Language:English
Published: IEEE 12.09.2023
Subjects:
ISSN:1946-0759
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused extensively on the development of intuitive programming methods.This article proposes a framework for task-oriented programming introducing an intuitive and modular task structure. The framework provides an algorithm able to optimize the execution parameter of the tasks. A physical simulation environment allows accurate parameter optimization in a virtual environment providing feasible and safe results. Efficiency tests demonstrated the method's effectiveness, and a comparison with genetic and Bayesian -based ones have been conducted.
AbstractList The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused extensively on the development of intuitive programming methods.This article proposes a framework for task-oriented programming introducing an intuitive and modular task structure. The framework provides an algorithm able to optimize the execution parameter of the tasks. A physical simulation environment allows accurate parameter optimization in a virtual environment providing feasible and safe results. Efficiency tests demonstrated the method's effectiveness, and a comparison with genetic and Bayesian -based ones have been conducted.
Author Delledonne, Michele
Beschi, Manuel
Villagrossi, Enrico
Author_xml – sequence: 1
  givenname: Michele
  surname: Delledonne
  fullname: Delledonne, Michele
  organization: University of Brescia,Department of Mechanical and Industrial Engineering,Brescia,Italy,25123
– sequence: 2
  givenname: Enrico
  surname: Villagrossi
  fullname: Villagrossi, Enrico
  organization: National Research Council of Italy,Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing,Milan,Italy,20133
– sequence: 3
  givenname: Manuel
  surname: Beschi
  fullname: Beschi, Manuel
  organization: University of Brescia,Department of Mechanical and Industrial Engineering,Brescia,Italy,25123
BookMark eNo1kM1KAzEUhaMoWGvfQDAvMDV38jOTZSmtCoVuKrgrN9M7NdqZDEkU6tNbUVeHA993FueaXfShJ8buQEwBhL1fbJYzrYyEaSlKOQVRVroqxRmb2MrWUgsprYX6nI3AKlOIStsrNknpTQhx8o2VdsRe1kP2nf_y_Z4PGLGjTDHx0PIYXMi-4RnTexGipz7Tjg8x7E9U98N_euTIu49D9sPrMfkm8eRPFbMP_Q27bPGQaPKXY_a8XGzmj8Vq_fA0n60KD2BzAaidqZST0iAp41pELUDVhJpAGbJgDNY720gyO6dE2TjtSuNcjXXTVkKO2e3vriei7RB9h_G4_T9DfgMKwVgI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ETFA54631.2023.10275720
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350339918
EISSN 1946-0759
EndPage 4
ExternalDocumentID 10275720
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i119t-1a5b674b336ae46bfaa50148ea5e146e9166a8d9c3e6db402cb5b26bb8a8cf703
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1a5b674b336ae46bfaa50148ea5e146e9166a8d9c3e6db402cb5b26bb8a8cf703
PageCount 4
ParticipantIDs ieee_primary_10275720
PublicationCentury 2000
PublicationDate 2023-Sept.-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-12
  day: 12
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ETFA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.2311835
Snippet The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bayes methods
Complexity theory
Genetics
Industrial robots
Intuitive robot programming
Optimization
Robotic tasks optimization
Task analysis
Task-oriented programming
Virtual environments
Title Optimizing parameters of robotic task-oriented programming via a multiphysics simulation
URI https://ieeexplore.ieee.org/document/10275720
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sDq0sSOP0aEWjGVDkXqVtnORYpQGtSkHfj1PbspFQMDW2w5UnT2xffsd_cIeRoC4LKVhqWOCwQoEpj1yrPM545nLk8KU0SxCTWZ6PncTLtk9ZgLAwCRfAaD8Bjv8vPar8NRGXp4qjKVIkI_VkrukrUOByoYjBtuOg4Xtp5Hs_FLqPYeYGDKB_u3f-moxG1kfPbPDzgn_UNCHp3-bDUX5AiWl2T-ju5eld_YQ0MF7yowWxpaF3RVuxoXBG1t88nqUMkY40raUbGqMH5TWmrpjk0YZ6qhTVl1Ul598jEezV7fWCeUwMokMS1LbOakEo5zaUFIV1gbrgs12AzwTwgYAkqrc-M5yNwhYvQuc6l0TlvtC_T5K9Jb1ku4JtSDE4nlInVaiFxZiwEXaGwMpfGInW5IP5hl8bWrhbHYW-T2j_47chqMz6Lowj3ptas1PJATv2nLZvUYZ3ALVpCeuw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBT2pOPG3OXjNXJs0bY4iGxPn3GHCbiNJX6FI17F2O_jX-5J1Dg8evDUhhZKX17wv-d77CHnoAuCylYqFhgsEKBKYtrFlkU0Nj0waZCrzYhPxaJRMp2rcJKv7XBgA8OQz6LhHf5eflnbljsrQw8M4ikNE6PuREGF3k661O1LBcFxx1bC4sPXYm_SfXL13BwRD3tm-_0tJxW8k_eN_fsIJae9S8uj4Z7M5JXswPyPTd3T4Iv_CHupqeBeO21LRMqPL0pS4JGitq09WulrGGFnShoxVuPHrXFNNN3xCb6uKVnnRiHm1yUe_N3kesEYqgeVBoGoW6MjIWBjOpQYhTaa1uzBMQEeA_0LAIFDqJFWWg0wNYkZrIhNKYxKd2Ay9_py05uUcLgi1YESguQhNIkQaa40hFyTY6EplET1dkrabltliUw1jtp2Rqz_678nhYPI2nA1fRq_X5MgZgnkJhhvSqpcruCUHdl3n1fLOW_MbxlSiAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Optimizing+parameters+of+robotic+task-oriented+programming+via+a+multiphysics+simulation&rft.au=Delledonne%2C+Michele&rft.au=Villagrossi%2C+Enrico&rft.au=Beschi%2C+Manuel&rft.date=2023-09-12&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FETFA54631.2023.10275720&rft.externalDocID=10275720