Constraint-Forcing Recursive Generalized Maximum Correntropy Algorithm with Forgetting Factor for Adaptive Filtering
In this paper, jointly with the exponential weighted generalized maximum correntropy (GMC) criterion and the linear constraint framework, we derive a recursive constrained adaptive filtering algorithm named recursive constrained GMC with forgetting factor (FF-RCGMC). In addition, due to a lack of co...
Uloženo v:
| Vydáno v: | Proceedings - International Conference on Parallel and Distributed Systems s. 2740 - 2741 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.12.2023
|
| Témata: | |
| ISSN: | 2690-5965 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, jointly with the exponential weighted generalized maximum correntropy (GMC) criterion and the linear constraint framework, we derive a recursive constrained adaptive filtering algorithm named recursive constrained GMC with forgetting factor (FF-RCGMC). In addition, due to a lack of constraint information during the learning process, FF-RCGMC will diverge or even fail to work after some iterations. Therefore, we propose a more stable version by introducing a constraint-forcing strategy into FF-RCGMC and call this robust type as constraint-forcing FF-RCGMC (CFFF-RCGMC). Some simulation results in system identification under non-Gaussian noisy environments validate the effectiveness of CFFF-RCGMC. |
|---|---|
| ISSN: | 2690-5965 |
| DOI: | 10.1109/ICPADS60453.2023.00366 |