A Switchable Multi-Objective Grey Wolf Optimization Algorithm Based on Decomposition
In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems. Specifically, an improved solution update method incorporated the original crossover/mutation operations and the Levy flight strategy, which...
Uloženo v:
| Vydáno v: | 2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
09.12.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems. Specifically, an improved solution update method incorporated the original crossover/mutation operations and the Levy flight strategy, which benefits the global search ability of the algorithm. After that, a mechanism for judging the evolutionary state of population based on the number of neighborhood updates is proposed. According to the population evolutionary state, the update strategy of individual is switched and the neighborhood size of each subproblem can be adaptively adjusted. At last, proposed SMOGW/D is evaluated comprehensively on a series of benchmark functions. Experimental results have demonstrated the superiority of SMOGW/D against other five advanced methods on each indicator in most cases, which fully validates the effectiveness of enhanced strategies. |
|---|---|
| AbstractList | In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems. Specifically, an improved solution update method incorporated the original crossover/mutation operations and the Levy flight strategy, which benefits the global search ability of the algorithm. After that, a mechanism for judging the evolutionary state of population based on the number of neighborhood updates is proposed. According to the population evolutionary state, the update strategy of individual is switched and the neighborhood size of each subproblem can be adaptively adjusted. At last, proposed SMOGW/D is evaluated comprehensively on a series of benchmark functions. Experimental results have demonstrated the superiority of SMOGW/D against other five advanced methods on each indicator in most cases, which fully validates the effectiveness of enhanced strategies. |
| Author | Zeng, Nianyin Wu, Peishu Li, Han Yin, Yiqi |
| Author_xml | – sequence: 1 givenname: Yiqi surname: Yin fullname: Yin, Yiqi email: yyqhk17@stu.xmu.edu.cn organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China – sequence: 2 givenname: Peishu surname: Wu fullname: Wu, Peishu email: wupeishu@stu.xmu.edu.cn organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China – sequence: 3 givenname: Han surname: Li fullname: Li, Han email: hanliy@stu.xmu.edu.cn organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China – sequence: 4 givenname: Nianyin surname: Zeng fullname: Zeng, Nianyin email: zny@xmu.edu.cn organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China |
| BookMark | eNo1z8tKxDAYBeAIutBx3sBFXqA1f9M0zbJWHQdGurDicsjlrxPpjTYq49NbUVcHDh8HzgU57YceCaHAYgCmrouy2NYiSyCJE5YkMTDgMk_ghKyVzCHLRCr4Is9JXdCnTx_sQZsW6eN7G3xUmTe0wX8g3Ux4pC9D29BqDL7zXzr4oadF-zpMPhw6eqNndHSpbtEO3TjM_gdckrNGtzOu_3JFnu_v6vIh2lWbbVnsIg-gQgRCCp1qy02qHec21YK53FqwxjmZp0woqVxuQDrXYKogc1oZZg0upGGSr8jV765HxP04-U5Px_3_Wf4Nm8RQcA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ACAIT56212.2022.10137821 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISBN | 9781665453110 1665453117 |
| EndPage | 7 |
| ExternalDocumentID | 10137821 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science and Technology Major Project funderid: 10.13039/501100018537 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-1575a4ac3b4ad33c4a50d8cc1cbdd78405979d8b17ddfe4916da9b0cbec1cf073 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:13:10 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-1575a4ac3b4ad33c4a50d8cc1cbdd78405979d8b17ddfe4916da9b0cbec1cf073 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10137821 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec.-9 |
| PublicationDateYYYYMMDD | 2022-12-09 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT) |
| PublicationTitleAbbrev | ACAIT |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8155327 |
| Snippet | In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Benchmark testing Feature extraction grey wolf optimization algorithm (GWO) MOEA/D Muti-objective problems neighborhood update strategy Planning Reliability engineering Sociology Statistics Switches |
| Title | A Switchable Multi-Objective Grey Wolf Optimization Algorithm Based on Decomposition |
| URI | https://ieeexplore.ieee.org/document/10137821 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYujEVxHf8sDqEtdJbY_lSyChthJFdKscnw1FbYOqFsS_5-ykIAYGtsiKnOhO9nsvuXcm5Myp0LQkcQzZLgSBkjGlFWdgpPEia4M2sbv-vex21XCo-5VZPXphnHOx-Mw1w2X8lw-FXYZPZbjCuUBEQ7GzLmW7NGutqnMSfY4vfzdAPOfBYNVqNVe3_zo4JeLGzeY_n7hFGj8OPNr_xpZtsuZmO6QemGHZWHmXDDr04WOMMQ_eJxp9tKyXv5b7F0Xl_0mfiomnPdwTppXZknYmz8V8vHiZ0gtEL6A4dOVCVXlVutUgjzfXg8tbVh2RwMac6wXjyLZMaqzIUwNC2NRkCShruc0BJIo31AsaVM4lgHcpckEwOk8sZo5bj8t7j9RmxcztE5p5zb1VXgqfpBy89l7gJMjPnG4ZcAekEeIzeiu7YIxWoTn8Y_yI1EMWYumHPia1xXzpTsiGfcdAzU9j7r4A5N6dfw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQQaIntiJ2fOCaEmch9rEsVStKW4kgeqscj12K2gZVLYi_Z-ykIA4cuEWW4kQzst97ybwxIRea26YlvvaQ7YIVKLHHBWceyESaML4CIV13_U7S7fLBQPRLs7rzwmitXfGZrttL9y8fcrW0n8pwhbMQEQ3FznocRYFf2LVW9Tm-uMTXb6eI6MxarIKgvrrh19EpDjmaW_985jap_XjwaP8bXXbImp7tkqrlhkVr5T2SNujjxxijbt1P1DlpvV72WuxgFLX_J33OJ4b2cFeYlnZL2piM8vl48TKl14hfQHHoVtu68rJ4q0aemnfpTcsrD0nwxoyJhceQb8lIqjCLJIShimTsA1eKqQwgQfmGikEAz1gCYHSEbBCkyHyFuWPK4ALfJ5VZPtMHhMZGMKO4SULjRwyMMCbESZChaRFI0IekZuMzfCv6YAxXoTn6Y_ycbLbSh86w0-7eH5OqzYgrBBEnpLKYL_Up2VDvGLT5mcvjF0HpoMY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+6th+Asian+Conference+on+Artificial+Intelligence+Technology+%28ACAIT%29&rft.atitle=A+Switchable+Multi-Objective+Grey+Wolf+Optimization+Algorithm+Based+on+Decomposition&rft.au=Yin%2C+Yiqi&rft.au=Wu%2C+Peishu&rft.au=Li%2C+Han&rft.au=Zeng%2C+Nianyin&rft.date=2022-12-09&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FACAIT56212.2022.10137821&rft.externalDocID=10137821 |