A Switchable Multi-Objective Grey Wolf Optimization Algorithm Based on Decomposition

In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems. Specifically, an improved solution update method incorporated the original crossover/mutation operations and the Levy flight strategy, which...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT) s. 1 - 7
Hlavní autoři: Yin, Yiqi, Wu, Peishu, Li, Han, Zeng, Nianyin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.12.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems. Specifically, an improved solution update method incorporated the original crossover/mutation operations and the Levy flight strategy, which benefits the global search ability of the algorithm. After that, a mechanism for judging the evolutionary state of population based on the number of neighborhood updates is proposed. According to the population evolutionary state, the update strategy of individual is switched and the neighborhood size of each subproblem can be adaptively adjusted. At last, proposed SMOGW/D is evaluated comprehensively on a series of benchmark functions. Experimental results have demonstrated the superiority of SMOGW/D against other five advanced methods on each indicator in most cases, which fully validates the effectiveness of enhanced strategies.
AbstractList In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems. Specifically, an improved solution update method incorporated the original crossover/mutation operations and the Levy flight strategy, which benefits the global search ability of the algorithm. After that, a mechanism for judging the evolutionary state of population based on the number of neighborhood updates is proposed. According to the population evolutionary state, the update strategy of individual is switched and the neighborhood size of each subproblem can be adaptively adjusted. At last, proposed SMOGW/D is evaluated comprehensively on a series of benchmark functions. Experimental results have demonstrated the superiority of SMOGW/D against other five advanced methods on each indicator in most cases, which fully validates the effectiveness of enhanced strategies.
Author Zeng, Nianyin
Wu, Peishu
Li, Han
Yin, Yiqi
Author_xml – sequence: 1
  givenname: Yiqi
  surname: Yin
  fullname: Yin, Yiqi
  email: yyqhk17@stu.xmu.edu.cn
  organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China
– sequence: 2
  givenname: Peishu
  surname: Wu
  fullname: Wu, Peishu
  email: wupeishu@stu.xmu.edu.cn
  organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China
– sequence: 3
  givenname: Han
  surname: Li
  fullname: Li, Han
  email: hanliy@stu.xmu.edu.cn
  organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China
– sequence: 4
  givenname: Nianyin
  surname: Zeng
  fullname: Zeng, Nianyin
  email: zny@xmu.edu.cn
  organization: Xiamen University,Department of Instrumental and Electrical Engineering,Fujian,China
BookMark eNo1z8tKxDAYBeAIutBx3sBFXqA1f9M0zbJWHQdGurDicsjlrxPpjTYq49NbUVcHDh8HzgU57YceCaHAYgCmrouy2NYiSyCJE5YkMTDgMk_ghKyVzCHLRCr4Is9JXdCnTx_sQZsW6eN7G3xUmTe0wX8g3Ux4pC9D29BqDL7zXzr4oadF-zpMPhw6eqNndHSpbtEO3TjM_gdckrNGtzOu_3JFnu_v6vIh2lWbbVnsIg-gQgRCCp1qy02qHec21YK53FqwxjmZp0woqVxuQDrXYKogc1oZZg0upGGSr8jV765HxP04-U5Px_3_Wf4Nm8RQcA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACAIT56212.2022.10137821
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 9781665453110
1665453117
EndPage 7
ExternalDocumentID 10137821
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Major Project
  funderid: 10.13039/501100018537
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-1575a4ac3b4ad33c4a50d8cc1cbdd78405979d8b17ddfe4916da9b0cbec1cf073
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:10 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-1575a4ac3b4ad33c4a50d8cc1cbdd78405979d8b17ddfe4916da9b0cbec1cf073
PageCount 7
ParticipantIDs ieee_primary_10137821
PublicationCentury 2000
PublicationDate 2022-Dec.-9
PublicationDateYYYYMMDD 2022-12-09
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-9
  day: 09
PublicationDecade 2020
PublicationTitle 2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)
PublicationTitleAbbrev ACAIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8155327
Snippet In this paper, a switchable multi-objective grey wolf optimization algorithm based on decomposition (SMOGW/D) is proposed to deal with muti-objective problems....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Feature extraction
grey wolf optimization algorithm (GWO)
MOEA/D
Muti-objective problems
neighborhood update strategy
Planning
Reliability engineering
Sociology
Statistics
Switches
Title A Switchable Multi-Objective Grey Wolf Optimization Algorithm Based on Decomposition
URI https://ieeexplore.ieee.org/document/10137821
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYujEVxHf8sDqEtdJbY_lSyChthJFdKscnw1FbYOqFsS_5-ykIAYGtsiKnOhO9nsvuXcm5Myp0LQkcQzZLgSBkjGlFWdgpPEia4M2sbv-vex21XCo-5VZPXphnHOx-Mw1w2X8lw-FXYZPZbjCuUBEQ7GzLmW7NGutqnMSfY4vfzdAPOfBYNVqNVe3_zo4JeLGzeY_n7hFGj8OPNr_xpZtsuZmO6QemGHZWHmXDDr04WOMMQ_eJxp9tKyXv5b7F0Xl_0mfiomnPdwTppXZknYmz8V8vHiZ0gtEL6A4dOVCVXlVutUgjzfXg8tbVh2RwMac6wXjyLZMaqzIUwNC2NRkCShruc0BJIo31AsaVM4lgHcpckEwOk8sZo5bj8t7j9RmxcztE5p5zb1VXgqfpBy89l7gJMjPnG4ZcAekEeIzeiu7YIxWoTn8Y_yI1EMWYumHPia1xXzpTsiGfcdAzU9j7r4A5N6dfw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQQaIntiJ2fOCaEmch9rEsVStKW4kgeqscj12K2gZVLYi_Z-ykIA4cuEWW4kQzst97ybwxIRea26YlvvaQ7YIVKLHHBWceyESaML4CIV13_U7S7fLBQPRLs7rzwmitXfGZrttL9y8fcrW0n8pwhbMQEQ3FznocRYFf2LVW9Tm-uMTXb6eI6MxarIKgvrrh19EpDjmaW_985jap_XjwaP8bXXbImp7tkqrlhkVr5T2SNujjxxijbt1P1DlpvV72WuxgFLX_J33OJ4b2cFeYlnZL2piM8vl48TKl14hfQHHoVtu68rJ4q0aemnfpTcsrD0nwxoyJhceQb8lIqjCLJIShimTsA1eKqQwgQfmGikEAz1gCYHSEbBCkyHyFuWPK4ALfJ5VZPtMHhMZGMKO4SULjRwyMMCbESZChaRFI0IekZuMzfCv6YAxXoTn6Y_ycbLbSh86w0-7eH5OqzYgrBBEnpLKYL_Up2VDvGLT5mcvjF0HpoMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+6th+Asian+Conference+on+Artificial+Intelligence+Technology+%28ACAIT%29&rft.atitle=A+Switchable+Multi-Objective+Grey+Wolf+Optimization+Algorithm+Based+on+Decomposition&rft.au=Yin%2C+Yiqi&rft.au=Wu%2C+Peishu&rft.au=Li%2C+Han&rft.au=Zeng%2C+Nianyin&rft.date=2022-12-09&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FACAIT56212.2022.10137821&rft.externalDocID=10137821