Multiple Access Binary Computation Offloading via Reinforcement Learning

Computation offloading enables energy-limited mobile devices to expand the range of applications that they can execute. When multiple devices each seek to execute a latency-constrained indivisible task, the problem of device energy minimization involves jointly making binary decisions on whether or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 16th Canadian Workshop on Information Theory (CWIT) s. 1 - 6
Hlavní autoři: Salmani, Mahsa, Sohrabi, Foad, Davidson, Timothy. N., Yu, Wei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Computation offloading enables energy-limited mobile devices to expand the range of applications that they can execute. When multiple devices each seek to execute a latency-constrained indivisible task, the problem of device energy minimization involves jointly making binary decisions on whether or not each user should offload its task along with the allocation resources to the offloading users. It has been shown that for a K-user system that employs a multiple access scheme that exploits the full capabilities of the channel, when the binary decisions are given, a closed-form expression for the optimal resource allocation can be obtained. In this paper, we propose a reinforcement learning-based algorithm for finding offloading decisions that takes advantage of this closed-form expression for the resource allocation. Our numerical experiments illustrate that the proposed algorithm can achieve a better trade-off between performance and computational cost as compared to the existing approaches in the literature.
DOI:10.1109/CWIT.2019.8929930