Weighted Combined Water Level Prediction Based on Nonlinear Programming Genetic Algorithm

A single prediction method has its own advantages and disadvantages in different aspects. In order to improve the accuracy of water level prediction, a water level prediction method combining The Autoregressive Integrated Moving Average (ARIMA) Model, Exponential Smoothing (ES) model and Long Short-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 7th International Conference on Computational Intelligence and Applications (ICCIA) s. 140 - 145
Hlavní autoři: Wang, Congyou, Cuan, Wanbing, Jia, Lu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 24.06.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A single prediction method has its own advantages and disadvantages in different aspects. In order to improve the accuracy of water level prediction, a water level prediction method combining The Autoregressive Integrated Moving Average (ARIMA) Model, Exponential Smoothing (ES) model and Long Short-term Memory (LSTM) model through nonlinear programming genetic algorithm is proposed in this paper. By combining the advantages of local search of nonlinear programming and global search of genetic algorithm, this method uses nonlinear programming genetic algorithm to allocate the weights of ARIMA model, ES model and LSTM model, and obtains the final water level prediction result by weighting. The empirical results show that this method not only has higher prediction accuracy than single model, but also has higher prediction accuracy than using nonlinear programming or genetic algorithm to allocate weight.
AbstractList A single prediction method has its own advantages and disadvantages in different aspects. In order to improve the accuracy of water level prediction, a water level prediction method combining The Autoregressive Integrated Moving Average (ARIMA) Model, Exponential Smoothing (ES) model and Long Short-term Memory (LSTM) model through nonlinear programming genetic algorithm is proposed in this paper. By combining the advantages of local search of nonlinear programming and global search of genetic algorithm, this method uses nonlinear programming genetic algorithm to allocate the weights of ARIMA model, ES model and LSTM model, and obtains the final water level prediction result by weighting. The empirical results show that this method not only has higher prediction accuracy than single model, but also has higher prediction accuracy than using nonlinear programming or genetic algorithm to allocate weight.
Author Wang, Congyou
Jia, Lu
Cuan, Wanbing
Author_xml – sequence: 1
  givenname: Congyou
  surname: Wang
  fullname: Wang, Congyou
  email: 408371679@qq.com
  organization: The Eastern Route Of South-to-North Water, Diversion Project Jiangsu Water Source Co.,Ltd,Nanjing,China
– sequence: 2
  givenname: Wanbing
  surname: Cuan
  fullname: Cuan, Wanbing
  email: 1205428937@qq.com
  organization: The Eastern Route Of South-to-North Water, Diversion Project Jiangsu Water Source Co.,Ltd,Nanjing,China
– sequence: 3
  givenname: Lu
  surname: Jia
  fullname: Jia, Lu
  email: 824056498@qq.com
  organization: School of Physical and Mathematical Science, Nanjing Tech University,Nanjing,China
BookMark eNotj8FKxDAYhCPowV19Ag_mBVqTNkmTYy26Fop6UBZPS5L-6QbaRLJB8O0tuKf54BsGZoMuQwyA0D0lJaVEPfRd17ecVw0tK1JVpZKVZFxcoA0VgjPFJWuu0dce_HTMMOIuLsaHFfY6Q8ID_MCM3xOM3mYfA37Up1Wu8BrDvBZ1Wm2ckl4WHya8gwDZW9zOU0w-H5cbdOX0fILbc27R5_PTR_dSDG-7vmuHwlMqcwHSEOGcok4bCdwwJwxldiRWk9pJYiVRVkBDxehIBYrWprbAiBuNAUJUvUV3_7seAA7fyS86_R7Ob-s_WdxRVg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIA55271.2022.9828456
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665495847
9781665495844
EndPage 145
ExternalDocumentID 9828456
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-e8b06ff91fab8e5b4f6b14cd0ca03f80c809c6e716df02e913b3ce40fdbbe0093
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e8b06ff91fab8e5b4f6b14cd0ca03f80c809c6e716df02e913b3ce40fdbbe0093
PageCount 6
ParticipantIDs ieee_primary_9828456
PublicationCentury 2000
PublicationDate 2022-June-24
PublicationDateYYYYMMDD 2022-06-24
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-24
  day: 24
PublicationDecade 2020
PublicationTitle 2022 7th International Conference on Computational Intelligence and Applications (ICCIA)
PublicationTitleAbbrev ICCIA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7982906
Snippet A single prediction method has its own advantages and disadvantages in different aspects. In order to improve the accuracy of water level prediction, a water...
SourceID ieee
SourceType Publisher
StartPage 140
SubjectTerms Aerospace electronics
combined water level prediction
Computational modeling
Lakes
nonlinear programming genetic algorithm
Predictive models
Programming
Resource management
Smoothing methods
weighted combination
Title Weighted Combined Water Level Prediction Based on Nonlinear Programming Genetic Algorithm
URI https://ieeexplore.ieee.org/document/9828456
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA2tePCk0orf5ODRbbO7abI51mKxIKUHpfVUks1EC7aVdevvd2a7VAQv3oYkJDBJmLzJmxnGbpSNtQ1WRyq1IpI6URG-QiCSyskeeITQ3lXFJvR4nM1mZtJgt7tYGACoyGfQIbH6y_frfEOusq5BeIAGv8maWqttrFZN2YqF6Y4Gg1GfEooR7EuSTj36V9mUymoMD_-33hFr_4Tf8cnOsByzBqxa7GVaOTHBc7zCCGdRmOI7seCPRPvB8fTjQlrmd2iYPEdhvE2DYQuajVhYS5yOU6JpPC28__66Lhbl27LNnof3T4OHqK6LEC0QDpQRZE6oEEwcrMug52RQLpa5F7kVachEngmTK0Ak5INIwMSpS3OQInjngFwYJ2xvtV7BKeNU_Vzq6qbHsof9sbeJlxkYb7XtmTPWIrXMP7apL-a1Rs7_br5gB6R5YlIl8pLtlcUGrth-_lUuPovrar--AQsqmXs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0gmuhJDRi_7cGjhW27_dgjEglEbDhgwBPZ7c4qiYCpxd_vTGkwJl68TdrNNpntZvbNvpnH2G2kvFhZFbtRoLgrYj9y8RQCroi0CMEghDa6FJuI0zSZTuWoxu62tTAAUJLPoEVmeZdvVtmaUmVtifAAA_4O2yXlrKpaqyJteVy2B93uoEMtxQj4-X6rGv9LOKWMG73D_33xiDV_CvCc0Ta0HLMaLBvsZVKmMcE4uIkR0KIxwZNi7gyJ-IPj6c6F_OzcY2gyDhrpphGGymk24mEtcDqHWk3j_-J03l9X-bx4WzTZc-9h3O27lTKCO0dAULiQaB5ZKz2rdAKhFjbSnsgMzxQPbMKzhMssAsRCxnIfpBfoIAPBrdEaKIlxwurL1RJOmUP65yIu97onQnzvGeUbkYA0KlahPGMNcsvsY9P8YlZ55Pzvxzdsvz9-Gs6Gg_Txgh3QKhCvyheXrF7ka7hie9lXMf_Mr8u1-wY3nZzE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+7th+International+Conference+on+Computational+Intelligence+and+Applications+%28ICCIA%29&rft.atitle=Weighted+Combined+Water+Level+Prediction+Based+on+Nonlinear+Programming+Genetic+Algorithm&rft.au=Wang%2C+Congyou&rft.au=Cuan%2C+Wanbing&rft.au=Jia%2C+Lu&rft.date=2022-06-24&rft.pub=IEEE&rft.spage=140&rft.epage=145&rft_id=info:doi/10.1109%2FICCIA55271.2022.9828456&rft.externalDocID=9828456