An Improved Genetic Algorithm for Solving Tri-level Programming Problems

When genetic algorithm is adopted to solve tri-level programming, many problems exist, such as controlling population size, jumping out of local optima, and avoiding low efficiency. An improved genetic algorithm with parallel strategy is proposed in this paper to solve tri-level programming, as well...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 4th International Conference on Industrial Artificial Intelligence (IAI) s. 1 - 5
Hlavní autoři: Su, Kai, Lei, Zhili, Niu, Haiming
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 24.08.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:When genetic algorithm is adopted to solve tri-level programming, many problems exist, such as controlling population size, jumping out of local optima, and avoiding low efficiency. An improved genetic algorithm with parallel strategy is proposed in this paper to solve tri-level programming, as well as elites reserving and fitness value crowding strategy. Simulations with numerical examples are done to prove correctness and effectiveness of the proposed algorithm.
DOI:10.1109/IAI55780.2022.9976878