An Improved Genetic Algorithm for Solving Tri-level Programming Problems
When genetic algorithm is adopted to solve tri-level programming, many problems exist, such as controlling population size, jumping out of local optima, and avoiding low efficiency. An improved genetic algorithm with parallel strategy is proposed in this paper to solve tri-level programming, as well...
Uloženo v:
| Vydáno v: | 2022 4th International Conference on Industrial Artificial Intelligence (IAI) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
24.08.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | When genetic algorithm is adopted to solve tri-level programming, many problems exist, such as controlling population size, jumping out of local optima, and avoiding low efficiency. An improved genetic algorithm with parallel strategy is proposed in this paper to solve tri-level programming, as well as elites reserving and fitness value crowding strategy. Simulations with numerical examples are done to prove correctness and effectiveness of the proposed algorithm. |
|---|---|
| DOI: | 10.1109/IAI55780.2022.9976878 |