Bayes-OS-ELM :An Novel Ensemble Method For Classification Application

Online Sequential Extreme Learning Machine (OS-ELM) has high accuracy and fast update speed in the areas of classification, such as fault diagnosis and anomaly detection. However, OS-ELM selects hidden layer parameters randomly leads to unstable output, which reduces the reliability of OS-ELM seriou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC) S. 160 - 166
Hauptverfasser: Zhu, Qingyu, Bai, Rui, Li, Mengting, Chen, Shaowei, Wen, Pengfei
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2019
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Online Sequential Extreme Learning Machine (OS-ELM) has high accuracy and fast update speed in the areas of classification, such as fault diagnosis and anomaly detection. However, OS-ELM selects hidden layer parameters randomly leads to unstable output, which reduces the reliability of OS-ELM seriously. In this paper, a ensemble method based on OS-ELM and Naive Bayes(Bayes-OS-ELM) has been developed. The ensemble model establishes parallel sub-classifiers with OS-ELM and a secondary classifier with Naive Bayes to fuse the results of the former sub-classifiers. Because of the parallel structure, the ensemble model can greatly reduce the disturbance caused by the random set of hidden layer parameters of OS-ELM and make the classification result more stable. Besides, as an accurate and stable algorithm, Naive Bayes effectively promote the accuracy and stability of the classification model. Several UCI data sets have been involved to verify the proposed classification model. Experimental results show that this method has high accuracy, stable result and great generalization performance compared with the existing approach.
AbstractList Online Sequential Extreme Learning Machine (OS-ELM) has high accuracy and fast update speed in the areas of classification, such as fault diagnosis and anomaly detection. However, OS-ELM selects hidden layer parameters randomly leads to unstable output, which reduces the reliability of OS-ELM seriously. In this paper, a ensemble method based on OS-ELM and Naive Bayes(Bayes-OS-ELM) has been developed. The ensemble model establishes parallel sub-classifiers with OS-ELM and a secondary classifier with Naive Bayes to fuse the results of the former sub-classifiers. Because of the parallel structure, the ensemble model can greatly reduce the disturbance caused by the random set of hidden layer parameters of OS-ELM and make the classification result more stable. Besides, as an accurate and stable algorithm, Naive Bayes effectively promote the accuracy and stability of the classification model. Several UCI data sets have been involved to verify the proposed classification model. Experimental results show that this method has high accuracy, stable result and great generalization performance compared with the existing approach.
Author Zhu, Qingyu
Bai, Rui
Wen, Pengfei
Chen, Shaowei
Li, Mengting
Author_xml – sequence: 1
  givenname: Qingyu
  surname: Zhu
  fullname: Zhu, Qingyu
  organization: China Aero-polytechnology Establishment,Beijing,PR China
– sequence: 2
  givenname: Rui
  surname: Bai
  fullname: Bai, Rui
  organization: Northwestern Polytechnical University,Xi'an,PR China
– sequence: 3
  givenname: Mengting
  surname: Li
  fullname: Li, Mengting
  organization: Northwestern Polytechnical University,Xi'an,PR China
– sequence: 4
  givenname: Shaowei
  surname: Chen
  fullname: Chen, Shaowei
  organization: Northwestern Polytechnical University,Xi'an,PR China
– sequence: 5
  givenname: Pengfei
  surname: Wen
  fullname: Wen, Pengfei
  organization: Northwestern Polytechnical University,Xi'an,PR China
BookMark eNotjD1PwzAUAI0EA22ZGVj8BxLes5uPxxZCCkhpi1SYKzt5FpbSOEoipP57kOh0pxtuIa770LMQ9wgxItDj4eWjjBUgxQCgsyuxwEzl-BeIbkX1bM48RftDVNVb-VT0chd-uJNVP_HJdiy3PH-HVm7CKMvOTJN3vjGzD70shqG7-ErcONNNfHfhUnxtqs_yLar3r-9lUUceMZ-j1jQNEBrnMGHF1DIwodOMNls3JrHaYNJmrK2j1ObMplG5SsmmYFXLa70UD_9fz8zHYfQnM56PhCkB5PoX03pHZw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SDPC.2019.00037
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728101999
9781728101996
EndPage 166
ExternalDocumentID 9169008
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-dacc091aff15e2e9de0e91f3e1b74ca5b3a15d7e3bf96b8eeac28269b60b2de43
IEDL.DBID RIE
IngestDate Mon Jul 08 05:38:31 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-dacc091aff15e2e9de0e91f3e1b74ca5b3a15d7e3bf96b8eeac28269b60b2de43
PageCount 7
ParticipantIDs ieee_primary_9169008
PublicationCentury 2000
PublicationDate 2019-Aug.
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-Aug.
PublicationDecade 2010
PublicationTitle 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
PublicationTitleAbbrev SDPC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.695195
Snippet Online Sequential Extreme Learning Machine (OS-ELM) has high accuracy and fast update speed in the areas of classification, such as fault diagnosis and anomaly...
SourceID ieee
SourceType Publisher
StartPage 160
SubjectTerms Bayes-OS-ELM
Classification algorithms
ensemble method
Fuses
Learning systems
Naive Bayes
Optimization
OS-ELM
parallel structure
Stability analysis
sub-classifier
Training
Title Bayes-OS-ELM :An Novel Ensemble Method For Classification Application
URI https://ieeexplore.ieee.org/document/9169008
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA21uHCl0opvsnBp7GRmMknc1TrFha2FKnRX8riBQp2RvsC_d5IpLYIbdyGbkBvIfZ1zD0J34EysdawIs0aQFJgmklNGLI-diGIjE1GLTfDhUEwmctRA9zsuDAAE8Bk8-GXo5dvSrH2prCN9T8czew84z2qu1nZaD41kZ_w86nmslh9AGSW_5VKCt-gf_--cE9Te0-7waOdQTlEDihbKn9Q3LMnbmOSvA_zYLfCw3MAc58USPvUc8CBoQON-ucBB4dJjf4K5cXffnG6jj37-3nshW-0DMqtC_hWxypjKlSvnKIMYpIUIJHUJUM1To5hOFGWWQ6KdzLSA6v-skqdM6izSsYU0OUPNoizgHGFdZXxVYCCEjCDloKQ2xpcanB9lzxS9QC1vgulXPd5iur395d_bV-jI27jGwF2j5mqxhht0aDar2XJxG97kB7tzj9I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA6lCnpSacXdHDwaO1s6ibdap1Rsx0Ir9FayvEChnZFu4L93kiktghdvIZeQF8jbvu99CD2AUYGUgSBUK0YioJLw2KdEx4FhXqB4yEqxiThN2XjMBxX0uOPCAIADn8GTXbpevs7V2pbKGtz2dCyz98AqZ9GSrbWd1-N7vDF8HbQtWsuOoPTC34Ipzl90Tv530imq74l3eLBzKWeoAlkNJS_iG5bkY0iSXh8_tzKc5huY4SRbwlzOAPedCjTu5AvsNC4t-scZHLf27ek6-uwko3aXbNUPyLQI-ldEC6UKZy6M8SkEwDV4wH0Tgi_jSAkqQ-FTHUMoDW9KBsUPWqRPTS6bngw0ROE5qmZ5BhcIyyLnK0IDxrgHUQyCS6VsscHYYfZU-JeoZk0w-SoHXEy2t7_6e_seHXVH_d6k95a-X6Nja-8SEXeDqqvFGm7RodqspsvFnXufH21ukx0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+International+Conference+on+Sensing%2C+Diagnostics%2C+Prognostics%2C+and+Control+%28SDPC%29&rft.atitle=Bayes-OS-ELM+%3AAn+Novel+Ensemble+Method+For+Classification+Application&rft.au=Zhu%2C+Qingyu&rft.au=Bai%2C+Rui&rft.au=Li%2C+Mengting&rft.au=Chen%2C+Shaowei&rft.date=2019-08-01&rft.pub=IEEE&rft.spage=160&rft.epage=166&rft_id=info:doi/10.1109%2FSDPC.2019.00037&rft.externalDocID=9169008