Partial Discharge Patterns Recognition of GIS with Denoising-stacked Autoencoder Networks

Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging. Therefore, monitoring the PD of GIS equipment is of great significance to detect insulation defects and avoid GIS equipment failure to ensure safe a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 5th Asia Conference on Power and Electrical Engineering (ACPEE) S. 1815 - 1818
Hauptverfasser: Zhao, Yiming, Yan, Jing, Wang, Yanxin, Liu, Tingliang, Jiang, Junjie
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2020
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging. Therefore, monitoring the PD of GIS equipment is of great significance to detect insulation defects and avoid GIS equipment failure to ensure safe and reliable operation of the grid. However, the traditional partial discharge pattern recognition mostly relies on artificial feature engineering, and the appropriateness of feature selection directly affects the recognition result. This paper proposes a pattern recognition classifier that directly and automatically selects and classifies fault features by denoising-stacked autoencoder. Automatic feature extraction effectively reduces the dependence of traditional pattern recognition classification algorithms based on expert systems and excessive human intervention. The results show that it not only inherits the advantages of the generalization ability of the denoising autoencoder model, but also has the advantages of easy stacking, faster convergence and higher accuracy.
AbstractList Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging. Therefore, monitoring the PD of GIS equipment is of great significance to detect insulation defects and avoid GIS equipment failure to ensure safe and reliable operation of the grid. However, the traditional partial discharge pattern recognition mostly relies on artificial feature engineering, and the appropriateness of feature selection directly affects the recognition result. This paper proposes a pattern recognition classifier that directly and automatically selects and classifies fault features by denoising-stacked autoencoder. Automatic feature extraction effectively reduces the dependence of traditional pattern recognition classification algorithms based on expert systems and excessive human intervention. The results show that it not only inherits the advantages of the generalization ability of the denoising autoencoder model, but also has the advantages of easy stacking, faster convergence and higher accuracy.
Author Jiang, Junjie
Zhao, Yiming
Liu, Tingliang
Wang, Yanxin
Yan, Jing
Author_xml – sequence: 1
  givenname: Yiming
  surname: Zhao
  fullname: Zhao, Yiming
  organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049
– sequence: 2
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
  organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049
– sequence: 3
  givenname: Yanxin
  surname: Wang
  fullname: Wang, Yanxin
  organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049
– sequence: 4
  givenname: Tingliang
  surname: Liu
  fullname: Liu, Tingliang
  organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049
– sequence: 5
  givenname: Junjie
  surname: Jiang
  fullname: Jiang, Junjie
  organization: State Grid Corporation of China State Grid Corporation of Fujian, Sanming,Sanming,China
BookMark eNotj71OwzAYAI0EA5Q-AQN-gQQ7TvwzRm0olSqI-BmYKsf-klotNrKNKt6eSnQ43XbS3aBLHzwgdE9JSSlRD-2i77pacibLilSkVJRxJsgFmishqagkbU6wa_TZ65idPuClS2an4wS41zlD9Am_ggmTd9kFj8OIV-s3fHR5h5fgg0vOT0XK2uzB4vYnB_AmWIj4GfIxxH26RVejPiSYnz1DH4_d--Kp2Lys1ot2UzhKZS6sUNbUZBiIVMqyijbcjDVTtqnZyOB0Q0EzNRreNJLyWg1ccGWlEUZKJQybobv_rgOA7Xd0Xzr-bs_D7A_SLlCP
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACPEE48638.2020.9136370
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728152813
172815281X
EndPage 1818
ExternalDocumentID 9136370
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-d79dc40bb0899d32156cf439d543f3e1101ea39fc65581649b6769d8c7c8897c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:57 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-d79dc40bb0899d32156cf439d543f3e1101ea39fc65581649b6769d8c7c8897c3
PageCount 4
ParticipantIDs ieee_primary_9136370
PublicationCentury 2000
PublicationDate 2020-June
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationTitle 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE)
PublicationTitleAbbrev ACPEE
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7308044
Snippet Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging....
SourceID ieee
SourceType Publisher
StartPage 1815
SubjectTerms Classification algorithms
denoising-stacked autoencoder
Feature extraction
gas insulated switchgear
partial discharge
Partial discharges
Pattern recognition
Stacking
Support vector machines
Training
Title Partial Discharge Patterns Recognition of GIS with Denoising-stacked Autoencoder Networks
URI https://ieeexplore.ieee.org/document/9136370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opalRw8mna3m90kx9KHeimLD6in0iQTWJBd6W79_U5214rgxVsIA4FJhplv8s0MIbcIknmiA8OEk5xxqRXTDgKmjBPSCiMCHdTDJsRyKVcrlXbI3b4WBgBq8hkM_bL-y7eF2flU2UiFURIJBOgHQiRNrVZL2QoDNZpM0_mcS3xQCPvGwbCV_jU2pfYai-P_nXdC-j_ldzTdO5ZT0oG8R95Sf8mbdzrLyrq9EcrUvTHzkj59s4CKnBaO3j8-U59fpTPIi8wnAxjGgGiulk52VeFbV1rY0mXDAC_75HUxf5k-sHYuAssQDlTMCmUND7T2X3Y2QqedGIeBhY155CJAZYSwiZQzSRxLhENKex6rlUYYKZUw0Rnp5kUO54SOJUpy4zCOAQ5joTnE8SYUJubConFekJ5Xy_qjaX2xbjVy-ff2gBx5zTdMqivSrbY7uCaH5rPKyu1NfV9fxqyYaQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jCvqksonf5sFHs7Vr2iSPYx9uOEvRCfNpLF9QkFbWzr_fS1cngi--hXAQuEu4-11-d4fQHYBkGklPEWY5JZRLQaQ1HhHKMq6ZYp70qmETLI75YiGSBrrf1cIYYyrymem4ZfWXr3O1camyrvCDKGAA0Pfc5Ky6Wqsmbfme6PYHyWhEOVwpAH49r1PL_xqcUvmN8dH_TjxG7Z8CPJzsXMsJapishd4SZ-bVOx6mRdXgCGSq7phZgZ-_eUB5hnOLH6Yv2GVY8dBkeerSAQSiQHiwGvc3Ze6aV2qzxvGWA1600et4NB9MSD0ZgaQACEqimdCKelK6TzsdgNuOlIXQQoc0sIEBZfhmFQirojDkAIiEdExWzRVTnAumglPUzPLMnCHc4yBJlYVIxlDTY5KaMFz5TIWUaXie56jl1LL82Da_WNYaufh7-xYdTOZPs-VsGj9eokNnhS2v6go1y_XGXKN99Vmmxfqmst0X5vWbsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+5th+Asia+Conference+on+Power+and+Electrical+Engineering+%28ACPEE%29&rft.atitle=Partial+Discharge+Patterns+Recognition+of+GIS+with+Denoising-stacked+Autoencoder+Networks&rft.au=Zhao%2C+Yiming&rft.au=Yan%2C+Jing&rft.au=Wang%2C+Yanxin&rft.au=Liu%2C+Tingliang&rft.date=2020-06-01&rft.pub=IEEE&rft.spage=1815&rft.epage=1818&rft_id=info:doi/10.1109%2FACPEE48638.2020.9136370&rft.externalDocID=9136370