Partial Discharge Patterns Recognition of GIS with Denoising-stacked Autoencoder Networks
Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging. Therefore, monitoring the PD of GIS equipment is of great significance to detect insulation defects and avoid GIS equipment failure to ensure safe a...
Gespeichert in:
| Veröffentlicht in: | 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE) S. 1815 - 1818 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2020
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging. Therefore, monitoring the PD of GIS equipment is of great significance to detect insulation defects and avoid GIS equipment failure to ensure safe and reliable operation of the grid. However, the traditional partial discharge pattern recognition mostly relies on artificial feature engineering, and the appropriateness of feature selection directly affects the recognition result. This paper proposes a pattern recognition classifier that directly and automatically selects and classifies fault features by denoising-stacked autoencoder. Automatic feature extraction effectively reduces the dependence of traditional pattern recognition classification algorithms based on expert systems and excessive human intervention. The results show that it not only inherits the advantages of the generalization ability of the denoising autoencoder model, but also has the advantages of easy stacking, faster convergence and higher accuracy. |
|---|---|
| AbstractList | Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging. Therefore, monitoring the PD of GIS equipment is of great significance to detect insulation defects and avoid GIS equipment failure to ensure safe and reliable operation of the grid. However, the traditional partial discharge pattern recognition mostly relies on artificial feature engineering, and the appropriateness of feature selection directly affects the recognition result. This paper proposes a pattern recognition classifier that directly and automatically selects and classifies fault features by denoising-stacked autoencoder. Automatic feature extraction effectively reduces the dependence of traditional pattern recognition classification algorithms based on expert systems and excessive human intervention. The results show that it not only inherits the advantages of the generalization ability of the denoising autoencoder model, but also has the advantages of easy stacking, faster convergence and higher accuracy. |
| Author | Jiang, Junjie Zhao, Yiming Liu, Tingliang Wang, Yanxin Yan, Jing |
| Author_xml | – sequence: 1 givenname: Yiming surname: Zhao fullname: Zhao, Yiming organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049 – sequence: 2 givenname: Jing surname: Yan fullname: Yan, Jing organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049 – sequence: 3 givenname: Yanxin surname: Wang fullname: Wang, Yanxin organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049 – sequence: 4 givenname: Tingliang surname: Liu fullname: Liu, Tingliang organization: Xi'an Jiaotong University,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an,China,710049 – sequence: 5 givenname: Junjie surname: Jiang fullname: Jiang, Junjie organization: State Grid Corporation of China State Grid Corporation of Fujian, Sanming,Sanming,China |
| BookMark | eNotj71OwzAYAI0EA5Q-AQN-gQQ7TvwzRm0olSqI-BmYKsf-klotNrKNKt6eSnQ43XbS3aBLHzwgdE9JSSlRD-2i77pacibLilSkVJRxJsgFmishqagkbU6wa_TZ65idPuClS2an4wS41zlD9Am_ggmTd9kFj8OIV-s3fHR5h5fgg0vOT0XK2uzB4vYnB_AmWIj4GfIxxH26RVejPiSYnz1DH4_d--Kp2Lys1ot2UzhKZS6sUNbUZBiIVMqyijbcjDVTtqnZyOB0Q0EzNRreNJLyWg1ccGWlEUZKJQybobv_rgOA7Xd0Xzr-bs_D7A_SLlCP |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ACPEE48638.2020.9136370 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728152813 172815281X |
| EndPage | 1818 |
| ExternalDocumentID | 9136370 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-d79dc40bb0899d32156cf439d543f3e1101ea39fc65581649b6769d8c7c8897c3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:57 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-d79dc40bb0899d32156cf439d543f3e1101ea39fc65581649b6769d8c7c8897c3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9136370 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-June |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE) |
| PublicationTitleAbbrev | ACPEE |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7308044 |
| Snippet | Partial discharge (PD) is the main characterization of gas insulated switchgear (GIS) insulation defects, which will further aggravate equipment aging.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1815 |
| SubjectTerms | Classification algorithms denoising-stacked autoencoder Feature extraction gas insulated switchgear partial discharge Partial discharges Pattern recognition Stacking Support vector machines Training |
| Title | Partial Discharge Patterns Recognition of GIS with Denoising-stacked Autoencoder Networks |
| URI | https://ieeexplore.ieee.org/document/9136370 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opalRw8mna3m90kx9KHeimLD6in0iQTWJBd6W79_U5214rgxVsIA4FJhplv8s0MIbcIknmiA8OEk5xxqRXTDgKmjBPSCiMCHdTDJsRyKVcrlXbI3b4WBgBq8hkM_bL-y7eF2flU2UiFURIJBOgHQiRNrVZL2QoDNZpM0_mcS3xQCPvGwbCV_jU2pfYai-P_nXdC-j_ldzTdO5ZT0oG8R95Sf8mbdzrLyrq9EcrUvTHzkj59s4CKnBaO3j8-U59fpTPIi8wnAxjGgGiulk52VeFbV1rY0mXDAC_75HUxf5k-sHYuAssQDlTMCmUND7T2X3Y2QqedGIeBhY155CJAZYSwiZQzSRxLhENKex6rlUYYKZUw0Rnp5kUO54SOJUpy4zCOAQ5joTnE8SYUJubConFekJ5Xy_qjaX2xbjVy-ff2gBx5zTdMqivSrbY7uCaH5rPKyu1NfV9fxqyYaQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jCvqksonf5sFHs7Vr2iSPYx9uOEvRCfNpLF9QkFbWzr_fS1cngi--hXAQuEu4-11-d4fQHYBkGklPEWY5JZRLQaQ1HhHKMq6ZYp70qmETLI75YiGSBrrf1cIYYyrymem4ZfWXr3O1camyrvCDKGAA0Pfc5Ky6Wqsmbfme6PYHyWhEOVwpAH49r1PL_xqcUvmN8dH_TjxG7Z8CPJzsXMsJapishd4SZ-bVOx6mRdXgCGSq7phZgZ-_eUB5hnOLH6Yv2GVY8dBkeerSAQSiQHiwGvc3Ze6aV2qzxvGWA1600et4NB9MSD0ZgaQACEqimdCKelK6TzsdgNuOlIXQQoc0sIEBZfhmFQirojDkAIiEdExWzRVTnAumglPUzPLMnCHc4yBJlYVIxlDTY5KaMFz5TIWUaXie56jl1LL82Da_WNYaufh7-xYdTOZPs-VsGj9eokNnhS2v6go1y_XGXKN99Vmmxfqmst0X5vWbsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+5th+Asia+Conference+on+Power+and+Electrical+Engineering+%28ACPEE%29&rft.atitle=Partial+Discharge+Patterns+Recognition+of+GIS+with+Denoising-stacked+Autoencoder+Networks&rft.au=Zhao%2C+Yiming&rft.au=Yan%2C+Jing&rft.au=Wang%2C+Yanxin&rft.au=Liu%2C+Tingliang&rft.date=2020-06-01&rft.pub=IEEE&rft.spage=1815&rft.epage=1818&rft_id=info:doi/10.1109%2FACPEE48638.2020.9136370&rft.externalDocID=9136370 |