Popularity Block Labelling for Steiner Systems

Ordering the blocks of a design, the point sum of an element is the sum of the indices of blocks containing that element. Block labelling for popularity asks for the point sums to be as equal as possible. For Steiner systems of order v strength t in general, the average point sum is O(v 2t-1 ); unde...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 Algebraic and Combinatorial Coding Theory (ACCT) s. 41 - 46
Hlavní autor: Colbourn, Charles J.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 11.10.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Ordering the blocks of a design, the point sum of an element is the sum of the indices of blocks containing that element. Block labelling for popularity asks for the point sums to be as equal as possible. For Steiner systems of order v strength t in general, the average point sum is O(v 2t-1 ); under various restrictions on block partitions of the Steiner system, the difference between the largest and smallest point sums is shown to be O(v (t+1)/2 log v).
DOI:10.1109/ACCT51235.2020.9383363