Popularity Block Labelling for Steiner Systems

Ordering the blocks of a design, the point sum of an element is the sum of the indices of blocks containing that element. Block labelling for popularity asks for the point sums to be as equal as possible. For Steiner systems of order v strength t in general, the average point sum is O(v 2t-1 ); unde...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2020 Algebraic and Combinatorial Coding Theory (ACCT) s. 41 - 46
Hlavný autor: Colbourn, Charles J.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 11.10.2020
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Ordering the blocks of a design, the point sum of an element is the sum of the indices of blocks containing that element. Block labelling for popularity asks for the point sums to be as equal as possible. For Steiner systems of order v strength t in general, the average point sum is O(v 2t-1 ); under various restrictions on block partitions of the Steiner system, the difference between the largest and smallest point sums is shown to be O(v (t+1)/2 log v).
DOI:10.1109/ACCT51235.2020.9383363