Data-Driven Deep Reinforcement Learning Control: Application to New Energy Aircraft PMSM
As the power of the new energy aircraft, the performance of permanent magnet synchronous motor (PMSM) directly determines the reliability and stability of the flight state. The complex coupling characteristics (strong nonlinearity, time-varying parameters, multiple working modes) essentially exist i...
Uloženo v:
| Vydáno v: | Chinese Automation Congress (Online) s. 7127 - 7132 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.10.2021
|
| Témata: | |
| ISSN: | 2688-0938 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As the power of the new energy aircraft, the performance of permanent magnet synchronous motor (PMSM) directly determines the reliability and stability of the flight state. The complex coupling characteristics (strong nonlinearity, time-varying parameters, multiple working modes) essentially exist in the PMSM speed control system, which makes it difficult for traditional control methods to meet application requirements. Aiming at the PMSM speed control, this paper proposes a novel data-driven deep reinforcement learning method. The system operating data is utilized, and a deep deterministic policy gradient (DDPG) agent is established to fully characterize the system data relationship. Instead of the speed loop and current loop in traditional PID control, DDPG intelligent controller directly outputs the quadrature axis voltage. The problem of poor torque dynamic performance caused by the slow response speed of the current loop in the traditional speed control system is effectively solved. Simulation results demonstrate that, under three different typical operating conditions, the proposed method can meet high requirements of PMSM control system. Compared with the traditional PID controller, the DDPG controller shows excellent dynamic and steady-state characteristics, and has stronger robustness and stability. |
|---|---|
| AbstractList | As the power of the new energy aircraft, the performance of permanent magnet synchronous motor (PMSM) directly determines the reliability and stability of the flight state. The complex coupling characteristics (strong nonlinearity, time-varying parameters, multiple working modes) essentially exist in the PMSM speed control system, which makes it difficult for traditional control methods to meet application requirements. Aiming at the PMSM speed control, this paper proposes a novel data-driven deep reinforcement learning method. The system operating data is utilized, and a deep deterministic policy gradient (DDPG) agent is established to fully characterize the system data relationship. Instead of the speed loop and current loop in traditional PID control, DDPG intelligent controller directly outputs the quadrature axis voltage. The problem of poor torque dynamic performance caused by the slow response speed of the current loop in the traditional speed control system is effectively solved. Simulation results demonstrate that, under three different typical operating conditions, the proposed method can meet high requirements of PMSM control system. Compared with the traditional PID controller, the DDPG controller shows excellent dynamic and steady-state characteristics, and has stronger robustness and stability. |
| Author | Yu, Wenke Qi, Yiwen Xu, Hai Zhang, Chi Zhao, Xiujuan Zhao, Tienan Zhang, Lei Li, Xin Liu, Yuanqiang |
| Author_xml | – sequence: 1 givenname: Xin surname: Li fullname: Li, Xin organization: Rhyxeon General Aircraft Co., Ltd.,Shenyang,China,110132 – sequence: 2 givenname: Yiwen surname: Qi fullname: Qi, Yiwen email: qiyiwen@sau.edu.cn organization: Rhyxeon General Aircraft Co., Ltd.,Shenyang,China,110132 – sequence: 3 givenname: Tienan surname: Zhao fullname: Zhao, Tienan organization: Rhyxeon General Aircraft Co., Ltd.,Shenyang,China,110132 – sequence: 4 givenname: Yuanqiang surname: Liu fullname: Liu, Yuanqiang organization: Rhyxeon General Aircraft Co., Ltd.,Shenyang,China,110132 – sequence: 5 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Shenyang Aircraft Airworthiness Certification Center of CAAC,Shenyang,China,110043 – sequence: 6 givenname: Hai surname: Xu fullname: Xu, Hai organization: Shenyang Aircraft Airworthiness Certification Center of CAAC,Shenyang,China,110043 – sequence: 7 givenname: Wenke surname: Yu fullname: Yu, Wenke organization: Shenyang Aerospace University,School of Automation,Shenyang,China,110136 – sequence: 8 givenname: Xiujuan surname: Zhao fullname: Zhao, Xiujuan organization: Shenyang Aerospace University,School of Automation,Shenyang,China,110136 – sequence: 9 givenname: Chi surname: Zhang fullname: Zhang, Chi organization: Shenyang Aerospace University,School of Automation,Shenyang,China,110136 |
| BookMark | eNot0MtKAzEUgOEoCra1TyBCXmDqyWWSjLthWi8wVfEC7komPSmRNjOkodK3d2FX_-5b_GNyEfuIhNwymDEG1V1TN6UAEDMOnM0qzQ2r2BkZM6VKyZXUcE5GXBlTQCXMFZnu9z8AwAWTpYQR-Z7bbIt5CgeMdI440HcM0ffJ4Q5jpi3aFEPc0KaPOfXbe1oPwzY4m0Mfae7pC_7SRcS0OdI6JJesz_Rt-bG8Jpfebvc4PXVCvh4Wn81T0b4-Pjd1WwTGTC7W3GpvwJlSaS9EpUzHrdK26oQHFKWSaLyznYXOc614B2bNpGOOg5ZCWzEhN_9uQMTVkMLOpuPqNEL8AXXJU5g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CAC53003.2021.9728191 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665426470 9781665426473 |
| EISSN | 2688-0938 |
| EndPage | 7132 |
| ExternalDocumentID | 9728191 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Technology Development funderid: 10.13039/100006180 – fundername: Liaoning Revitalization Talents Program funderid: 10.13039/501100018617 – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Scientific Research Fund of Liaoning Provincial Education Department funderid: 10.13039/501100013099 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i118t-d2a7f80c8567f33968b2a67a9b3f0e3564e8fcaba0bf2762b08d14c1c207437a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:37:27 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-d2a7f80c8567f33968b2a67a9b3f0e3564e8fcaba0bf2762b08d14c1c207437a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9728191 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Oct.-22 |
| PublicationDateYYYYMMDD | 2021-10-22 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Automation Congress (Online) |
| PublicationTitleAbbrev | CAC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002314540 |
| Score | 1.7952431 |
| Snippet | As the power of the new energy aircraft, the performance of permanent magnet synchronous motor (PMSM) directly determines the reliability and stability of the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 7127 |
| SubjectTerms | Aircraft Atmospheric modeling Data driven control Data models DDPG New energy aircraft PMSM Reinforcement learning Steady-state Torque Velocity control |
| Title | Data-Driven Deep Reinforcement Learning Control: Application to New Energy Aircraft PMSM |
| URI | https://ieeexplore.ieee.org/document/9728191 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JawIxFA5WeuipLVq6k0OPjWYyk2V6k1HpoYp0AW-SSV6KF5Xp2N_fJA5KoZfeQiAEXsLbv-8h9KA1FdYGotuElyRz3BJtXUKkgIwxwxm1kcT1RU6naj7PZy30uMfCAEBsPoNeWMZavl2bbUiV9XMZyj4-1jmSUuywWvt8ivdTAplcA9JJaN4vBgVP_af1QSBLes3ZX0NUog0Zn_7v9jPUPYDx8GxvZs5RC1YdNB_qWpNhFXQVHgJs8CtEDlQT0324oU39xMWuFf0JDw6ValyvsVdueBRxf3iwrEylXY1nk7dJF32MR-_FM2mGJJCljw1qYpmWTlGjuJAuTXOhSqaF1HmZOgopFxkoZ3SpaemY13wlVTbJTGJYcB6kTi9Qe7VewSXCPAHm_T1tjLGZMjLnytrA35WDDjzzV6gTpLLY7HgwFo1Arv_evkEnQfBBzzN2i9p1tYU7dGy-6-VXdR8f7wf2kZpc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFA_iBttpGzo295XDjqumadOku0lVHFORzYE3SZOX4UWlq_v7l8SiDHbZLQRC4L3wPvP7PYQepSSJ1o7oNmR5EBumA6lNGPAEYkoVo0R7EtcRn0zEfJ5Oa-hpj4UBAP_5DNpu6Xv5eq22rlTWSblr-9hc54jFMSU7tNa-omIjFUcnV8F0QpJ2sm7GIvtsbRpIw3Z1-tcYFe9FBmf_u_8cNQ9wPDzdO5oLVINVA817spRBr3DWCvcANvgNPAuq8gU_XBGnfuJs9xn9GXcPvWpcrrE1b7jvkX-4uyxUIU2Jp-P3cRN9DPqzbBhUYxKCpc0OykBTyY0gSrCEmyhKE5FTmXCZ5pEhELEkBmGUzCXJDbW2LydCh7EKFXXhA5fRJaqv1iu4QpiFQG3EJ5VSOhaKp0xo7Ri8UpCOaf4aNZxUFpsdE8aiEkjr7-0HdDKcjUeL0cvk9QadOiU4q0_pLaqXxRbu0LH6Lpdfxb1X5A8vwZ2j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Data-Driven+Deep+Reinforcement+Learning+Control%3A+Application+to+New+Energy+Aircraft+PMSM&rft.au=Li%2C+Xin&rft.au=Qi%2C+Yiwen&rft.au=Zhao%2C+Tienan&rft.au=Liu%2C+Yuanqiang&rft.date=2021-10-22&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=7127&rft.epage=7132&rft_id=info:doi/10.1109%2FCAC53003.2021.9728191&rft.externalDocID=9728191 |