A Study of Big Data Security on a Partitional Clustering Algorithm with Perturbation Technique

Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main idea of the proposed work. There are numerous clustering methods available that are used to categorize the information from the big data. PCA di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 International Conference on Smart Electronics and Communication (ICOSEC) s. 482 - 486
Hlavní autoři: Marichamy, V. Santhana, Natarajan, V.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.09.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main idea of the proposed work. There are numerous clustering methods available that are used to categorize the information from the big data. PCA discovers the cluster based on the initial partition of the data. In this approach, it is possible to develop a security safeguarding of data that is impoverished to allow the calculations and communication. The performances were analyzed on Health Care database under the studies of various parameters like precision, accuracy, and F-score measure. The outcome of the results is to demonstrate that this method is used to decrease the complication in preserving privacy and better accuracy than that of the existing techniques.
AbstractList Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main idea of the proposed work. There are numerous clustering methods available that are used to categorize the information from the big data. PCA discovers the cluster based on the initial partition of the data. In this approach, it is possible to develop a security safeguarding of data that is impoverished to allow the calculations and communication. The performances were analyzed on Health Care database under the studies of various parameters like precision, accuracy, and F-score measure. The outcome of the results is to demonstrate that this method is used to decrease the complication in preserving privacy and better accuracy than that of the existing techniques.
Author Natarajan, V.
Marichamy, V. Santhana
Author_xml – sequence: 1
  givenname: V. Santhana
  surname: Marichamy
  fullname: Marichamy, V. Santhana
  organization: SRM Valliammai Engineering College,Department of Computer Applications,Kattankulathur,India,603203
– sequence: 2
  givenname: V.
  surname: Natarajan
  fullname: Natarajan, V.
  organization: Anna University, MIT Campus,Department of Instrumentation Engineering,Chrompet,Chennai,India,600044
BookMark eNotj81Kw0AUhUfQhdY-gZv7AqlzZ_K7jLHaQqGF1K3lJnOTDqSJTidI396I3ZwPDh8HzoO47YeehQCUC0SZPa-Lbbkswkym2UJJJReZwkiFeCPmWZJiolKMwhize_GZQ-lHc4GhgRfbwit5gpLr0Vk_lT0Q7Mh56-3QUwdFN549O9u3kHftMEnHE_xMCTt2fnQV_Ymw5_rY2--RH8VdQ92Z51fOxMfbcl-sgs32fV3km8Aipj4wqBqsQplKVEZhhaypakLZGELSmk0U11XF2iT1pDQYRgpVRLEmWStDUs_E0_-uZebDl7MncpfD9bX-Bcd7Uyg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICOSEC49089.2020.9215241
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728154619
1728154618
EndPage 486
ExternalDocumentID 9215241
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-d12f1b408012d21b1e3abf40fda1a33ed56cbbe3d7c801f1452125a63a0c2da03
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:16 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-d12f1b408012d21b1e3abf40fda1a33ed56cbbe3d7c801f1452125a63a0c2da03
PageCount 5
ParticipantIDs ieee_primary_9215241
PublicationCentury 2000
PublicationDate 2020-Sept.
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.
PublicationDecade 2020
PublicationTitle 2020 International Conference on Smart Electronics and Communication (ICOSEC)
PublicationTitleAbbrev ICOSEC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7399439
Snippet Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main...
SourceID ieee
SourceType Publisher
StartPage 482
SubjectTerms Accuracy
Big Data
Clustering algorithms
Clustering Tme
Conferences
Execution Time
F-Socre Measure
HDFS
Partitioning algorithms
PCA
Perturbation methods
Precision
Principal component analysis
Privacy Preserving
Security
Title A Study of Big Data Security on a Partitional Clustering Algorithm with Perturbation Technique
URI https://ieeexplore.ieee.org/document/9215241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvDotrvJvnKsa4te6kIr9GRJMpNaqLtSt4L_3s3utiJ48RbChMAkYTKPbz5CbpTmMbMPMNaSOz4w4SgumYN--bcFJZDFuiKbiMbjeDYTaYvc7rAwiFgVn2HPDqtcPuR6Y0NlfWFJWC1KfS-KwhqrtS3OcUX_MXmaDJMqkVX6fcztNeK_eFMqszE6_N-GR6T7g7-j6c6yHJMWZh3yMqC26O-L5obeLRf0XhaSThr6OZpnVNLU3oM6uEeT1cb2QCjX08FqkZdCr2_URl1piuvSzqjqSOh028O1S55Hw2ny4DTsCM6ydAoKBzxmPOW71sQA85SHXCrjuwakJzlHCEKtFHKIdCliPN-idAMZculqBtLlJ6Sd5RmeEqoQwBiOnIHvA4jYhIExEJgQdSDC6Ix0rG7m73UDjHmjlvO_py_IgVV_XYh1SdrFeoNXZF9_FsuP9XV1at8tn5wk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jCvqksonf5sFHu7VJ2rWPs25sOGdhE_bkyMdlDmYrtRP8723abiL44lsIOQJ3CZe73O9-CN0ISX1iLqAvObWYIoElKCcWsPxtq0QAxJcF2URnPPZnsyCqodstFgYAiuIzaJlh8ZevErk2qbJ2YEhYDUp9x2WM2CVaa1OeYwftYfg06YXFV1Ye-RG7VQn8Yk4pHEf_4H9bHqLmDwIPR1vfcoRqEDfQSxebsr8vnGh8t1zge55xPKkI6HASY44jcxLK9B4OV2vTBSGXx93VIskXvb5hk3fFEaS5pxGFUfB008W1iZ77vWk4sCp-BGuZhwWZpRyiHcFs42QUcYQDlAvNbK24wykF5XpSCKCqI_Ml2mEGp-tyj3JbEsVteozqcRLDCcIClNKaAiWKMaUCX3uu1srVHkg38DqnqGF0M38vW2DMK7Wc_T19jfYG08fRfDQcP5yjfWOKsizrAtWzdA2XaFd-ZsuP9Kqw4Dd5H59r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+International+Conference+on+Smart+Electronics+and+Communication+%28ICOSEC%29&rft.atitle=A+Study+of+Big+Data+Security+on+a+Partitional+Clustering+Algorithm+with+Perturbation+Technique&rft.au=Marichamy%2C+V.+Santhana&rft.au=Natarajan%2C+V.&rft.date=2020-09-01&rft.pub=IEEE&rft.spage=482&rft.epage=486&rft_id=info:doi/10.1109%2FICOSEC49089.2020.9215241&rft.externalDocID=9215241