Research on extraction and classification of EEG features for multi-class motor imagery
Aiming at solving the problems of low recognition accuracy and poor practicability caused by the small amount of data and insufficient training of the network weights when the deep neural network algorithm is directly used to classify the 4-class motor-imagery electroencephalogram signals(MI-EEG), W...
Uložené v:
| Vydané v: | 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) Ročník 1; s. 693 - 697 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2019
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Aiming at solving the problems of low recognition accuracy and poor practicability caused by the small amount of data and insufficient training of the network weights when the deep neural network algorithm is directly used to classify the 4-class motor-imagery electroencephalogram signals(MI-EEG), We combine the one-versus-the-rest common spatial pattern (OVR-CSP) algorithm and a novel convolution neural networks (CNN) algorithm to extract features and classify 4-class MI-EEG signals. Firstly, the original EEG signal data is truncated and expanded by using a fixed-size overlapping window, the features of intercepted sub-signals are extracted by CSP algorithm and the obtained feature vectors are merged as the input sample matrix of CNN. Secondly, CNN algorithm performs second feature extraction and final classification on the input sample matrix. Finally, the validity of the proposed algorithm was verified by the datasets IIIa of the BCI2005 competition. The average recognition accuracy of the three subjects has reached 91.9%, this is an improvement over other algorithms in recent years. |
|---|---|
| AbstractList | Aiming at solving the problems of low recognition accuracy and poor practicability caused by the small amount of data and insufficient training of the network weights when the deep neural network algorithm is directly used to classify the 4-class motor-imagery electroencephalogram signals(MI-EEG), We combine the one-versus-the-rest common spatial pattern (OVR-CSP) algorithm and a novel convolution neural networks (CNN) algorithm to extract features and classify 4-class MI-EEG signals. Firstly, the original EEG signal data is truncated and expanded by using a fixed-size overlapping window, the features of intercepted sub-signals are extracted by CSP algorithm and the obtained feature vectors are merged as the input sample matrix of CNN. Secondly, CNN algorithm performs second feature extraction and final classification on the input sample matrix. Finally, the validity of the proposed algorithm was verified by the datasets IIIa of the BCI2005 competition. The average recognition accuracy of the three subjects has reached 91.9%, this is an improvement over other algorithms in recent years. |
| Author | Fu, Wenli Zhao, Jinchuang Tang, Xuebin |
| Author_xml | – sequence: 1 givenname: Xuebin surname: Tang fullname: Tang, Xuebin organization: Guangxi University,School of Computer, Electrics and Information – sequence: 2 givenname: Jinchuang surname: Zhao fullname: Zhao, Jinchuang organization: Guangxi University,School of Computer, Electrics and Information – sequence: 3 givenname: Wenli surname: Fu fullname: Fu, Wenli organization: Guangxi University,School of Computer, Electrics and Information |
| BookMark | eNotj91KxDAUhCPoha77BF6YF2jNSdomuSylrgsLgiheLqfNiQb6I2kW3Ld3Wfdqho9hhrlj19M8EWOPIHIAYZ-2dVs3hVZa5lKAzY21RhT2iq2tNqClAbCisrfs840Wwth_83ni9Jsi9imcLE6O9wMuS_ChxzOaPW_bDfeE6RBp4X6OfDwMKWTnIB_ndCJhxC-Kx3t243FYaH3RFft4bt-bl2z3utk29S4LACZlaLqqUGQkadmVtnSiME57oVxJFhyQM4AgXWV6JZX3gBV1siNE22lpe7ViD_-9gYj2P_E0H4_7y131B2DRURk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IAEAC47372.2019.8998049 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728119069 1728119073 1728119065 9781728119076 |
| EndPage | 697 |
| ExternalDocumentID | 8998049 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-a8b643e82e72b595d048d7f03d5e91d1ed81a12d68c323ff1a6eb2beaa9b729c3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:50 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-a8b643e82e72b595d048d7f03d5e91d1ed81a12d68c323ff1a6eb2beaa9b729c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8998049 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Dec. |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) |
| PublicationTitleAbbrev | IAEAC |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.713734 |
| Snippet | Aiming at solving the problems of low recognition accuracy and poor practicability caused by the small amount of data and insufficient training of the network... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 693 |
| SubjectTerms | Brain modeling brain-computer interface systems (BCI) Classification algorithms common spatial pattern (CSP) Convolution convolutional neural network (CNN) Covariance matrices Electroencephalography Feature extraction motor imagery EEG signals (MI-EEG) Training |
| Title | Research on extraction and classification of EEG features for multi-class motor imagery |
| URI | https://ieeexplore.ieee.org/document/8998049 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRtbub7iY5lrJVQUoPir2VbGYCPbgrfQj9906ytSJ48RaGQMhMHt8k38wwdotgtJNWRxoyRQ6Kg0inykSQxzJ1NocYQnb9ZzmZqNlMT1vsbh8Lg4iBfIb3vhn-8qG2G_9U1ve-ASHaNmtLKZtYrR1lK4l1_2lYDEcDX3bFM7ZoCTS9f5VNCbfG-Oh_4x2z3k_4HZ_uL5YT1sKqy96-OXK8rjidqMsmIoGbCrj1ENhzfoKaee14UTxwhyFp54oTLuWBOBiFjpysQ5LFu09fse2x13HxMnqMdlURogU5A-vIqJJQBKoUZVpmOgPagyBdLCBDnUCCoBKTpJArK1LhXGJy8p5LNEaXhKStOGWdqq7wjHGk2ZUkj5WTgzIVOgZMYiGQjKdtZs9Z1ytl_tEkvpjv9HHxt_iSHXq9N1yPK9ZZLzd4zQ7s53qxWt4Ea30BTcmZvQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CnpSacW3OXh07Sb7So6lrLZYSw8VeyvZzAR6cFf6EPz3JtlaEbx4C0MgZCaPb5JvZgi5RVDSZFoGEhJhHRQDgeRCBZCGGTc6hRB8dv1hNhqJ6VSOG-RuGwuDiJ58hveu6f_yodJr91TWcb6BRbQ7ZDeJY87qaK0NaYuFsjPo5t1e7AqvOM6WXQR1_1-FU_y98XD4vxGPSPsnAI-Ot1fLMWlg2SKv3yw5WpXUnqmLOiaBqhKodiDYsX68omllaJ4_UoM-beeSWmRKPXUw8B2ptY-VzN9cAovPNnl5yCe9frCpixDMrTuwCpQoLI5AwTHjRSITsLsQMhNGkKBkwBAEU4xDKnTEI2OYSq3_XKBSsrBYWkcnpFlWJZ4SinZ2hZWHwmRxwSMZArIwitCaT-pEn5GWU8rsvU59Mdvo4_xv8Q3Z70-eh7PhYPR0QQ6cDWrmxyVprhZrvCJ7-mM1Xy6uveW-AHqBnQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+4th+Advanced+Information+Technology%2C+Electronic+and+Automation+Control+Conference+%28IAEAC%29&rft.atitle=Research+on+extraction+and+classification+of+EEG+features+for+multi-class+motor+imagery&rft.au=Tang%2C+Xuebin&rft.au=Zhao%2C+Jinchuang&rft.au=Fu%2C+Wenli&rft.date=2019-12-01&rft.pub=IEEE&rft.volume=1&rft.spage=693&rft.epage=697&rft_id=info:doi/10.1109%2FIAEAC47372.2019.8998049&rft.externalDocID=8998049 |