Fraction-of- Time Density Estimation Based on Linear Interpolation of Time Series

A new estimator for the probability density function of a signal observed over a finite observation interval is proposed. The estimator linearly interpolates adjacent samples and accommodates the presence of probability masses. The analysis is carried out in the fraction-of-time (FOT) probability fr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 Systems of Signals Generating and Processing in the Field of on Board Communications s. 1 - 4
Hlavní autoři: Shevgunov, Timofey, Napolitano, Antonio
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.03.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new estimator for the probability density function of a signal observed over a finite observation interval is proposed. The estimator linearly interpolates adjacent samples and accommodates the presence of probability masses. The analysis is carried out in the fraction-of-time (FOT) probability framework where signals are modeled as single functions of time rather than sample paths of a stochastic process. Numerical results show the better performance of the proposed estimator with respect to the kernel-based estimator. Moreover, the usefulness of analyzing signals in the FOT framework is enlightened.
DOI:10.1109/IEEECONF51389.2021.9415991