Fraction-of- Time Density Estimation Based on Linear Interpolation of Time Series
A new estimator for the probability density function of a signal observed over a finite observation interval is proposed. The estimator linearly interpolates adjacent samples and accommodates the presence of probability masses. The analysis is carried out in the fraction-of-time (FOT) probability fr...
Uloženo v:
| Vydáno v: | 2021 Systems of Signals Generating and Processing in the Field of on Board Communications s. 1 - 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.03.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new estimator for the probability density function of a signal observed over a finite observation interval is proposed. The estimator linearly interpolates adjacent samples and accommodates the presence of probability masses. The analysis is carried out in the fraction-of-time (FOT) probability framework where signals are modeled as single functions of time rather than sample paths of a stochastic process. Numerical results show the better performance of the proposed estimator with respect to the kernel-based estimator. Moreover, the usefulness of analyzing signals in the FOT framework is enlightened. |
|---|---|
| DOI: | 10.1109/IEEECONF51389.2021.9415991 |