Extracting Graphological Features for Identifying Personality Traits using Agglomerative Hierarchical Clustering Algorithm

Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological state of a writer in a subconscious manner. The graphology analysis has been proven to identify and predict the signs of mental health d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) S. 1 - 5
Hauptverfasser: Yusof, Noor Fazilla Abd, Zulkarnain, Nur Zareen, Ahmad, Sharifah Sakinah Syed, Othman, Zuraini, Hashim, Azura Hanim
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 13.09.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological state of a writer in a subconscious manner. The graphology analysis has been proven to identify and predict the signs of mental health disorders. This study explores the distinctive graphological features in Malaysian handwritings towards the identification of early sign of mental health disorders. The Agglomerative Hierarchical Clustering algorithm was proposed to build up clusters over the handwriting data. The promising finding suggests that the distinctive features could be useful in the personality traits analysis. The results from this study could be extended and further explored for identifying the early signs of depression through one's handwriting.
AbstractList Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological state of a writer in a subconscious manner. The graphology analysis has been proven to identify and predict the signs of mental health disorders. This study explores the distinctive graphological features in Malaysian handwritings towards the identification of early sign of mental health disorders. The Agglomerative Hierarchical Clustering algorithm was proposed to build up clusters over the handwriting data. The promising finding suggests that the distinctive features could be useful in the personality traits analysis. The results from this study could be extended and further explored for identifying the early signs of depression through one's handwriting.
Author Othman, Zuraini
Zulkarnain, Nur Zareen
Hashim, Azura Hanim
Yusof, Noor Fazilla Abd
Ahmad, Sharifah Sakinah Syed
Author_xml – sequence: 1
  givenname: Noor Fazilla Abd
  surname: Yusof
  fullname: Yusof, Noor Fazilla Abd
  email: elle@utem.edu.my
  organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100
– sequence: 2
  givenname: Nur Zareen
  surname: Zulkarnain
  fullname: Zulkarnain, Nur Zareen
  email: zareen@utem.edu.my
  organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100
– sequence: 3
  givenname: Sharifah Sakinah Syed
  surname: Ahmad
  fullname: Ahmad, Sharifah Sakinah Syed
  email: sakinah@utem.edu.my
  organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100
– sequence: 4
  givenname: Zuraini
  surname: Othman
  fullname: Othman, Zuraini
  email: zuraini@utem.edu.my
  organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100
– sequence: 5
  givenname: Azura Hanim
  surname: Hashim
  fullname: Hashim, Azura Hanim
  email: info.masteryacademy@gmail.com
  organization: Mastery Academy,Shah Alam,Selangor
BookMark eNotkMtqwzAURFVoF03aL-hG_QCnupatyMsQ8jAE2kW6DtfytSOQrSArpenXN6_VDMxhGGbEHnvfE2PvICYAovgoy_msXGzzHGQxSUWaTopCKp3rBzYCpfJMaTnVz-xv8RsDmmj7lq8CHvbe-dYadHxJGI-BBt74wMua-mib0wX7ojD4Hp2NJ74NaOPAj8MlmLWt8x0FjPaH-NqeXTD7a9ncHYdI4Uq51gcb990Le2rQDfR61zH7Xi6283Wy-Vyd128SC6BjUpACzAxJmTeVAimMyEQF0tTaZHUGUIg800hKNdjUaV2hkapKqSaYVqQqOWZvt15LRLtDsB2G0-5-h_wHM0Bftw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IICAIET55139.2022.9936858
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665468378
9781665468374
EndPage 5
ExternalDocumentID 9936858
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-9e61a4ce335fb6130c040b13cd8c4d41190548ae66fafd2dbac36b2ede17be6b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:54 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-9e61a4ce335fb6130c040b13cd8c4d41190548ae66fafd2dbac36b2ede17be6b3
PageCount 5
ParticipantIDs ieee_primary_9936858
PublicationCentury 2000
PublicationDate 2022-Sept.-13
PublicationDateYYYYMMDD 2022-09-13
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)
PublicationTitleAbbrev IICAIET
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8069223
Snippet Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial intelligence
clustering
Clustering algorithms
Clustering methods
Depression
Feature extraction
graphology
handwriting
machine learning
Mental health
personality traits
Prediction algorithms
Title Extracting Graphological Features for Identifying Personality Traits using Agglomerative Hierarchical Clustering Algorithm
URI https://ieeexplore.ieee.org/document/9936858
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAFHy0RcSTSit-s4JH0zZfu-ZYSmsLUnqo0FvJfsVATKRNRPz17tvGFsGLtxCWBHbJzszmzTyAezfQyuUidJj0uRMIETkGFJjDIt6XglOtpU3Xf2az2eNyGc0b8LDzwiilbPGZ6uKl_ZcvC1HhUVnPYCnGpTehyRjberUO4a6OzexNp8PBdLTAjiXoQPG8bj3-V-MUixvj4_-98QQ6ewMeme-g5RQaKm_D1-iztJ6mPCFPmDP9s28R5HGV0c3EMFCytd5a-xKZ76k2MaiUlhuChe4JGSRJVuB5FO52ZJKiDdl2RcnIMKswPMGOypJinZavbx14GY8Ww4lTt05wUqMYSidS1I0DoXw_1BwlgjAfK3d9TAIIZOAaGmCkSqwo1bGWnuSx8Cn3lFQu44py_wxaeZGrcyComFRAKYsEDQzZiD1tVGM_lF4cxubJF9DGeVu9b9MxVvWUXf59-wqOcGmw4sL1r6FVrit1Awfio0w361u7pN8Sr6gh
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAFHzUKupJpRW_XcGjaZtkszHHUqoN1tJDhd5K9iMxEBtpExF_vfu2sUXw4i2EfMAu2ZnZvJkHcGvTWNlceJYvXW5RIQJLg4Jv-QHvSMFZHEuTrj_0R6P76TQY1-Bu7YVRSpniM9XCQ_MvX-aixK2ytsZSjEvfgm2PUsdeubV24aYKzmyHYa8b9ifYswQ9KI7Tqu741TrFIMfDwf_eeQjNjQWPjNfgcgQ1NW_AV_-zMK6meUIeMWn6Z-UiyORKrZyJ5qBkZb41BiYy3pBtonEpLZYES90T0k2SLMcdKVzvyCBFI7Lpi5KRXlZifIK5KkvyRVq8vjXh5aE_6Q2sqnmClWrNUFiBYnZEhXJdL-YoEoT-XLntYhYAldTWRECLlUgxFkexdCSPhMu4o6Syfa4Yd4-hPs_n6gQIaiZFGfMDwaimG5ETa93Y8aQTeZF-8ik0cNxm76t8jFk1ZGd_n76GvcHkeTgbhqOnc9jHacL6C9u9gHqxKNUl7IiPIl0ursz0fgP5rqto
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Artificial+Intelligence+in+Engineering+and+Technology+%28IICAIET%29&rft.atitle=Extracting+Graphological+Features+for+Identifying+Personality+Traits+using+Agglomerative+Hierarchical+Clustering+Algorithm&rft.au=Yusof%2C+Noor+Fazilla+Abd&rft.au=Zulkarnain%2C+Nur+Zareen&rft.au=Ahmad%2C+Sharifah+Sakinah+Syed&rft.au=Othman%2C+Zuraini&rft.date=2022-09-13&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIICAIET55139.2022.9936858&rft.externalDocID=9936858