Extracting Graphological Features for Identifying Personality Traits using Agglomerative Hierarchical Clustering Algorithm
Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological state of a writer in a subconscious manner. The graphology analysis has been proven to identify and predict the signs of mental health d...
Gespeichert in:
| Veröffentlicht in: | 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
13.09.2022
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological state of a writer in a subconscious manner. The graphology analysis has been proven to identify and predict the signs of mental health disorders. This study explores the distinctive graphological features in Malaysian handwritings towards the identification of early sign of mental health disorders. The Agglomerative Hierarchical Clustering algorithm was proposed to build up clusters over the handwriting data. The promising finding suggests that the distinctive features could be useful in the personality traits analysis. The results from this study could be extended and further explored for identifying the early signs of depression through one's handwriting. |
|---|---|
| AbstractList | Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological state of a writer in a subconscious manner. The graphology analysis has been proven to identify and predict the signs of mental health disorders. This study explores the distinctive graphological features in Malaysian handwritings towards the identification of early sign of mental health disorders. The Agglomerative Hierarchical Clustering algorithm was proposed to build up clusters over the handwriting data. The promising finding suggests that the distinctive features could be useful in the personality traits analysis. The results from this study could be extended and further explored for identifying the early signs of depression through one's handwriting. |
| Author | Othman, Zuraini Zulkarnain, Nur Zareen Hashim, Azura Hanim Yusof, Noor Fazilla Abd Ahmad, Sharifah Sakinah Syed |
| Author_xml | – sequence: 1 givenname: Noor Fazilla Abd surname: Yusof fullname: Yusof, Noor Fazilla Abd email: elle@utem.edu.my organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100 – sequence: 2 givenname: Nur Zareen surname: Zulkarnain fullname: Zulkarnain, Nur Zareen email: zareen@utem.edu.my organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100 – sequence: 3 givenname: Sharifah Sakinah Syed surname: Ahmad fullname: Ahmad, Sharifah Sakinah Syed email: sakinah@utem.edu.my organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100 – sequence: 4 givenname: Zuraini surname: Othman fullname: Othman, Zuraini email: zuraini@utem.edu.my organization: Universiti Teknikal Malaysia Melaka,Fakulti Teknologi Maklumat dan Komunikasi,Durian Tunggal,Melaka,Malaysia,76100 – sequence: 5 givenname: Azura Hanim surname: Hashim fullname: Hashim, Azura Hanim email: info.masteryacademy@gmail.com organization: Mastery Academy,Shah Alam,Selangor |
| BookMark | eNotkMtqwzAURFVoF03aL-hG_QCnupatyMsQ8jAE2kW6DtfytSOQrSArpenXN6_VDMxhGGbEHnvfE2PvICYAovgoy_msXGzzHGQxSUWaTopCKp3rBzYCpfJMaTnVz-xv8RsDmmj7lq8CHvbe-dYadHxJGI-BBt74wMua-mib0wX7ojD4Hp2NJ74NaOPAj8MlmLWt8x0FjPaH-NqeXTD7a9ncHYdI4Uq51gcb990Le2rQDfR61zH7Xi6283Wy-Vyd128SC6BjUpACzAxJmTeVAimMyEQF0tTaZHUGUIg800hKNdjUaV2hkapKqSaYVqQqOWZvt15LRLtDsB2G0-5-h_wHM0Bftw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IICAIET55139.2022.9936858 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665468378 9781665468374 |
| EndPage | 5 |
| ExternalDocumentID | 9936858 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-9e61a4ce335fb6130c040b13cd8c4d41190548ae66fafd2dbac36b2ede17be6b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:50:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-9e61a4ce335fb6130c040b13cd8c4d41190548ae66fafd2dbac36b2ede17be6b3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9936858 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept.-13 |
| PublicationDateYYYYMMDD | 2022-09-13 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept.-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) |
| PublicationTitleAbbrev | IICAIET |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8069223 |
| Snippet | Handwriting/graphology is a unique and exclusive tool that describes one's non-verbal expression, which indirectly portrays the mental state and psychological... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial intelligence clustering Clustering algorithms Clustering methods Depression Feature extraction graphology handwriting machine learning Mental health personality traits Prediction algorithms |
| Title | Extracting Graphological Features for Identifying Personality Traits using Agglomerative Hierarchical Clustering Algorithm |
| URI | https://ieeexplore.ieee.org/document/9936858 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAFHy0RcSTSit-s4JH0zZfu-ZYSmsLUnqo0FvJfsVATKRNRPz17tvGFsGLtxCWBHbJzszmzTyAezfQyuUidJj0uRMIETkGFJjDIt6XglOtpU3Xf2az2eNyGc0b8LDzwiilbPGZ6uKl_ZcvC1HhUVnPYCnGpTehyRjberUO4a6OzexNp8PBdLTAjiXoQPG8bj3-V-MUixvj4_-98QQ6ewMeme-g5RQaKm_D1-iztJ6mPCFPmDP9s28R5HGV0c3EMFCytd5a-xKZ76k2MaiUlhuChe4JGSRJVuB5FO52ZJKiDdl2RcnIMKswPMGOypJinZavbx14GY8Ww4lTt05wUqMYSidS1I0DoXw_1BwlgjAfK3d9TAIIZOAaGmCkSqwo1bGWnuSx8Cn3lFQu44py_wxaeZGrcyComFRAKYsEDQzZiD1tVGM_lF4cxubJF9DGeVu9b9MxVvWUXf59-wqOcGmw4sL1r6FVrit1Awfio0w361u7pN8Sr6gh |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAFHzUKupJpRW_XcGjaZtkszHHUqoN1tJDhd5K9iMxEBtpExF_vfu2sUXw4i2EfMAu2ZnZvJkHcGvTWNlceJYvXW5RIQJLg4Jv-QHvSMFZHEuTrj_0R6P76TQY1-Bu7YVRSpniM9XCQ_MvX-aixK2ytsZSjEvfgm2PUsdeubV24aYKzmyHYa8b9ifYswQ9KI7Tqu741TrFIMfDwf_eeQjNjQWPjNfgcgQ1NW_AV_-zMK6meUIeMWn6Z-UiyORKrZyJ5qBkZb41BiYy3pBtonEpLZYES90T0k2SLMcdKVzvyCBFI7Lpi5KRXlZifIK5KkvyRVq8vjXh5aE_6Q2sqnmClWrNUFiBYnZEhXJdL-YoEoT-XLntYhYAldTWRECLlUgxFkexdCSPhMu4o6Syfa4Yd4-hPs_n6gQIaiZFGfMDwaimG5ETa93Y8aQTeZF-8ik0cNxm76t8jFk1ZGd_n76GvcHkeTgbhqOnc9jHacL6C9u9gHqxKNUl7IiPIl0ursz0fgP5rqto |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Artificial+Intelligence+in+Engineering+and+Technology+%28IICAIET%29&rft.atitle=Extracting+Graphological+Features+for+Identifying+Personality+Traits+using+Agglomerative+Hierarchical+Clustering+Algorithm&rft.au=Yusof%2C+Noor+Fazilla+Abd&rft.au=Zulkarnain%2C+Nur+Zareen&rft.au=Ahmad%2C+Sharifah+Sakinah+Syed&rft.au=Othman%2C+Zuraini&rft.date=2022-09-13&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIICAIET55139.2022.9936858&rft.externalDocID=9936858 |