Robot Online Task and Trajectory Planning using Mixed-Integer Model Predictive Control
A monolithic integration of the robot online task allocation and trajectory planning within the framework of a hybrid model predictive controller is introduced. To this end, the underlying mixed-integer nonlinear programming (MINLP) problem is transformed into a relaxed mixed-integer quadratically c...
Uloženo v:
| Vydáno v: | 2022 European Control Conference (ECC) s. 2005 - 2011 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
EUCA
12.07.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A monolithic integration of the robot online task allocation and trajectory planning within the framework of a hybrid model predictive controller is introduced. To this end, the underlying mixed-integer nonlinear programming (MINLP) problem is transformed into a relaxed mixed-integer quadratically constrained programming (MIQCP) problem, suitable to generate feasible robot trajectories online. The proposed algorithm is implemented and validated on an experimental setup using the robot operating system (ROS) software and a robot arm performing discrete pick-and-place tasks. |
|---|---|
| DOI: | 10.23919/ECC55457.2022.9838243 |