A Novel Combined Electricity Price Forecasting Method Based on Data Driven Algorithms

In the deregulated electricity market, accurate knowledge of electricity price tend helps maximize the profitability of the participants in the electricity market, so electricity price forecasting becomes extremely important. On the basis of not considering the situation of the electricity market it...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) s. 1 - 7
Hlavní autoři: Zhnag, Liang, Zou, Bin, Wang, Hongtao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the deregulated electricity market, accurate knowledge of electricity price tend helps maximize the profitability of the participants in the electricity market, so electricity price forecasting becomes extremely important. On the basis of not considering the situation of the electricity market itself and many factors affecting the electricity price, the historical load and electricity price are used as inputs to predict the electricity price from the perspective of data driven. The Lasso, Random Forest, Support Vector Machine and BP Neural Network methods are used to establish a single algorithmic electricity price model respectively, and then the linear Lasso and nonlinear BP neural network are used to make combined the prediction results of four single algorithmic electricity price models. Finally, the actual electricity price and load data from Queensland are used for simulation. The simulation results show that: (i) Among the four electricity price models, BP neural network model has the highest accuracy, and the average absolute error is 6.034. The Random Forests model has the worst accuracy, with an average absolute error of 9.669. (ii) The combined nonlinear BP neural network model can predict the electricity price more accurately with an average absolute error of 4.641.
AbstractList In the deregulated electricity market, accurate knowledge of electricity price tend helps maximize the profitability of the participants in the electricity market, so electricity price forecasting becomes extremely important. On the basis of not considering the situation of the electricity market itself and many factors affecting the electricity price, the historical load and electricity price are used as inputs to predict the electricity price from the perspective of data driven. The Lasso, Random Forest, Support Vector Machine and BP Neural Network methods are used to establish a single algorithmic electricity price model respectively, and then the linear Lasso and nonlinear BP neural network are used to make combined the prediction results of four single algorithmic electricity price models. Finally, the actual electricity price and load data from Queensland are used for simulation. The simulation results show that: (i) Among the four electricity price models, BP neural network model has the highest accuracy, and the average absolute error is 6.034. The Random Forests model has the worst accuracy, with an average absolute error of 9.669. (ii) The combined nonlinear BP neural network model can predict the electricity price more accurately with an average absolute error of 4.641.
Author Zhnag, Liang
Wang, Hongtao
Zou, Bin
Author_xml – sequence: 1
  givenname: Liang
  surname: Zhnag
  fullname: Zhnag, Liang
  organization: Shanghai University,School of Mechanical and Electrical Engineering and Automation,Shanghai,China
– sequence: 2
  givenname: Bin
  surname: Zou
  fullname: Zou, Bin
  organization: Shanghai University,School of Mechanical and Electrical Engineering and Automation,Shanghai,China
– sequence: 3
  givenname: Hongtao
  surname: Wang
  fullname: Wang, Hongtao
  organization: Shanghai University,School of Mechanical and Electrical Engineering and Automation,Shanghai,China
BookMark eNotj7tOwzAYRo0EAy08AQx-gQTfaOwxpGmpVKBDO1e-_GktJTZyrEp9eyLR6XzD0SedGboPMQBCr5SUlBL1ttm3TVHvSkaoKqUifKHIHZrRiknKKBPyER1q_B0v0OMmDsYHcLjtwebkrc9XvJsIeBUTWD1mH074C_I5Ovyhx0mNAS911niZ_AUCrvtTTD6fh_EJPXS6H-H5xjk6rNp981lsf9abpt4WnlKZC1WxjmkrmNWSmY4QI4xTnDkAthBCVaLildFguFbGTksBd4S_A5dEA-d8jl7-fz0AHH-TH3S6Hm-l_A-pk04J
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITEC-AP.2019.8903690
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728121248
9781728121246
EndPage 7
ExternalDocumentID 8903690
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-972f2ac42ca82bf00b4bd932dee2644974737baeb3a9bc7ba9e3d035e380ae333
IEDL.DBID RIE
IngestDate Wed Aug 27 07:44:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-972f2ac42ca82bf00b4bd932dee2644974737baeb3a9bc7ba9e3d035e380ae333
PageCount 7
ParticipantIDs ieee_primary_8903690
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific)
PublicationTitleAbbrev ITEC-AP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6933432
Snippet In the deregulated electricity market, accurate knowledge of electricity price tend helps maximize the profitability of the participants in the electricity...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
BP Neural Network
Data models
Electricity
Electricity price forecasting
Electricity supply industry
Forecasting
Lasso
Load modeling
Neural networks
Prediction algorithms
Predictive models
Random Forest
SVM
Transportation
Title A Novel Combined Electricity Price Forecasting Method Based on Data Driven Algorithms
URI https://ieeexplore.ieee.org/document/8903690
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjpmmc4Hgs_RADVB2o1K2yLxeIVBKUpv39nJ2qCImFzYosR7qT_e4l7_wYu8N-ZEwMoQgMKBERRgqbgJPtABC8O_Wfv13_RU2nyWKhZy12v--FQUQvPsMHN_T_8tMSNu5TWS_RdN5qIugHSj02vVq7bjhaskdbfSgGMyfXovw3U395pnjImBz_72UnrPvTe8dne1Q5ZS0sOmw-4NNyiytO25eoLKZ87O1rcqAimnvrdu5MNsGsnYyZv3pfaP5EEJXysuAjUxs-qtzJxger97LK64_PdZfNJ-O34bPYGSKInHhALbQKs9BAFIJJQpsFgY1sSgVYiujqGkcNpLKG-LHRFmikUaaBjFEmgUEp5RlrF2WB54xbDSrLZNy3YKI4C62JCNuBZmNMGcsuWMeFZPnV3Hmx3EXj8u_HV-zIRb0RAl6zdl1t8IYdwrbO19WtT9Q3ykeWmg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jCnpS2cTf5uDRuK5paXucm2PiVnbYYLeRvL5qYbbSdfv7fcnKRPDiLYTQQF6T733t9_Ix9oBdTykfXOEoCIRHGCl0CEa2A0DwbtR_9nb9cRDH4WIRTRvscV8Lg4hWfIZPpmn_5ScFbMynsk4Y0XkbEUE_MM5ZdbVWXQ9HD-3QZu-L3tQItugN2A3-5ZpiQWN48r_pTln7p_qOT_e4csYamLfYvMfjYosrThuYyCwm_MUa2GRAaTS35u3c2GyCWhshM59YZ2j-TCCV8CLnA1UpPijN2cZ7q_eizKqPz3WbzYcvs_5I1JYIIiMmUIkocFNXgeeCCl2dOo72dEIpWIJoMhtDDmSgFTFkFWmgVoQycaSPMnQUSinPWTMvcrxgXEcQpKn0uxqU56euVh6hO9Bo9Clm6SVrmSVZfu1uvVjWq3H1d_c9OxrNJuPl-DV-u2bHJgI7WeANa1blBm_ZIWyrbF3e2aB9A9DrmeM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Transportation+Electrification+Conference+and+Expo%2C+Asia-Pacific+%28ITEC+Asia-Pacific%29&rft.atitle=A+Novel+Combined+Electricity+Price+Forecasting+Method+Based+on+Data+Driven+Algorithms&rft.au=Zhnag%2C+Liang&rft.au=Zou%2C+Bin&rft.au=Wang%2C+Hongtao&rft.date=2019-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FITEC-AP.2019.8903690&rft.externalDocID=8903690