Data-Driven Based State Transition Algorithm for Dynamic Optimization

Most evolutionary algorithms solve the optimization problems by iteratively calculating the values of the objective functions. However, such explicit objective functions may not exist in solving many process industry optimization problems, especially when these processes have time varying dynamics,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 IEEE Symposium Series on Computational Intelligence (SSCI) s. 1091 - 1096
Hlavní autoři: Zhang, Yunxiang, Zhou, Xiaojun, Yang, Chunhua
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Most evolutionary algorithms solve the optimization problems by iteratively calculating the values of the objective functions. However, such explicit objective functions may not exist in solving many process industry optimization problems, especially when these processes have time varying dynamics, instead costly physical experiments should be conducted to evaluate the fitness values, which hinders the application of evolutionary algorithms. In this paper, a novel dynamic optimization technique based on data-driven state transition algorithm (STA) is investigated to solve the aforementioned issue. Firstly, the control vector parameterization (CVP) method is used to discretize the control variables, and control variable vectors are used to approximate the control trajectories. By means of costly experiments, data pairs are obtained by combining variable vectors and their corresponding fitness. Then, a novel method is proposed to obtain the optimal variable vector based on data-driven STA. By applying it in two well-known dynamic optimization instances, simulation results demonstrate that the proposed approach is able to obtain better optimization results than other methods with a limited budget of exact function evaluations.
AbstractList Most evolutionary algorithms solve the optimization problems by iteratively calculating the values of the objective functions. However, such explicit objective functions may not exist in solving many process industry optimization problems, especially when these processes have time varying dynamics, instead costly physical experiments should be conducted to evaluate the fitness values, which hinders the application of evolutionary algorithms. In this paper, a novel dynamic optimization technique based on data-driven state transition algorithm (STA) is investigated to solve the aforementioned issue. Firstly, the control vector parameterization (CVP) method is used to discretize the control variables, and control variable vectors are used to approximate the control trajectories. By means of costly experiments, data pairs are obtained by combining variable vectors and their corresponding fitness. Then, a novel method is proposed to obtain the optimal variable vector based on data-driven STA. By applying it in two well-known dynamic optimization instances, simulation results demonstrate that the proposed approach is able to obtain better optimization results than other methods with a limited budget of exact function evaluations.
Author Yang, Chunhua
Zhou, Xiaojun
Zhang, Yunxiang
Author_xml – sequence: 1
  givenname: Yunxiang
  surname: Zhang
  fullname: Zhang, Yunxiang
  organization: Central South University,School of Automation,Changsha,P. R. China,410083
– sequence: 2
  givenname: Xiaojun
  surname: Zhou
  fullname: Zhou, Xiaojun
  organization: Central South University,School of Automation,Changsha,P. R. China,410083
– sequence: 3
  givenname: Chunhua
  surname: Yang
  fullname: Yang, Chunhua
  organization: Central South University,School of Automation,Changsha,P. R. China,410083
BookMark eNotj8FKAzEURSPoQmu_QJD8wNS8ZMbkLetMrYVCF1PX5cW-aKAzUzJBqF9vxa4uXA6Xc-_EdT_0LMQjqBmAwqe2rVdl6cDOtAKcoVJGObgSU7TnUjvQpavcrVg0lKloUvzmXr7QyHvZZsost4n6MeY49HJ--BxSzF-dDEOSzamnLn7IzTHHLv7QH3IvbgIdRp5eciLeXxfb-q1Yb5arer4uIoDLBeqKgkfN9iwFVPlgiDEYDR6dUwH0PiAjolNsKrLWe2OePUJFQMqCmYiH_93IzLtjih2l0-5yzvwCcXZI-A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI44817.2019.9003081
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728124858
1728124859
EndPage 1096
ExternalDocumentID 9003081
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-925afb92e72011a5bf3ae9f321b9880f12df9e99980e35a77bb336b915a1a0713
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:34 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-925afb92e72011a5bf3ae9f321b9880f12df9e99980e35a77bb336b915a1a0713
PageCount 6
ParticipantIDs ieee_primary_9003081
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle 2019 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7068487
Snippet Most evolutionary algorithms solve the optimization problems by iteratively calculating the values of the objective functions. However, such explicit objective...
SourceID ieee
SourceType Publisher
StartPage 1091
SubjectTerms Approximation algorithms
Control vector parametrization
Data-driven
Dynamic optimization
Evolutionary computation
Heuristic algorithms
Linear programming
Optimization
Process control
State transition algorithm
Title Data-Driven Based State Transition Algorithm for Dynamic Optimization
URI https://ieeexplore.ieee.org/document/9003081
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRtJuN2TRH7Qd6qYUq9FaSzUQLtlvq1t_vJLtUBC_ewhIImyXz3tvMmyHkRoKwd9JmLBMuZ-FijmnrLKpWh8FPJXlSN5tQ43FvNtOTBrndeWEAICafQScM412-K_Jt-FXW1bG6CmqdPaWyyqtVm355orvTaf8JxQZXIWFLd-rJv7qmRNAYHf5vuSPS_nHf0ckOV45JA1YtMhyY0rDBJgQn-oDQ42jkiTSCTcy7ovcfbwVq_fclRSZKB1WvefqMQWFZuy3b5HU0fOk_sroFAlsg8y-ZTqXxVqegAlAbab0woL1IudV48jxPndeAJK-XgJBGKWuFyKzm0nATBOgJaa6KFZwSGgrFAfInnwmBKk7bXpqD0BgNuffg5BlphS2Yr6sqF_P67c__fnxBDsIuV4kdl6RZbrZwRfbzr3LxubmOn-YbtMuP9Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jCvqksonf5sFHszWNaZdH3QcbzjnYhL2NpLnRgdtkdv5-b7IyEXzxrZRCaUrvOae55x5CbiQIcydNwhJhM-Y35pgy1qBqtVj80iiLirCJdDBoTCZqWCK3Wy8MAITmM6j5w7CXb5fZ2v8qq6swXQW1zo5PzircWoXtl0eqPho1eyg3eOpbtlStuPxXbkqAjc7B_254SKo__js63CLLESnBokLaLZ1r1lr58kQfEHwsDUyRBrgJnVf0_v11iWr_bU6Ri9LWJm2ePmNZmBd-yyp56bTHzS4rQhDYDLl_zlQstTMqhtRDtZbGCQ3KiZgbhd-e47F1CpDmNSIQUqepMUIkRnGpufYS9JiUF8sFnBDqR8UBMiiXCIE6TplGnIFQWA-5c2DlKan4JZh-bOZcTIunP_v79DXZ646f-tN-b_B4Tvb9im_aPC5IOV-t4ZLsZl_57HN1FV7TN2ahkz4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Data-Driven+Based+State+Transition+Algorithm+for+Dynamic+Optimization&rft.au=Zhang%2C+Yunxiang&rft.au=Zhou%2C+Xiaojun&rft.au=Yang%2C+Chunhua&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=1091&rft.epage=1096&rft_id=info:doi/10.1109%2FSSCI44817.2019.9003081&rft.externalDocID=9003081