Modified Fuzzy C-Means Clustering Approach to Solve the Capacitated Vehicle Routing Problem

Fuzzy C-Means clustering is among the most successful clustering techniques available in the literature. The capacitated vehicle routing problem (CVRP) is one of the most studied NP-hard problems. CVRP has attracted the attention of many researchers due to its importance within the supply chain mana...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 21st International Arab Conference on Information Technology (ACIT) s. 1 - 7
Hlavní autoři: Wahby Shalaby, Mohamed A., Mohammed, Ayman R., Kassem, Sally
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 28.11.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fuzzy C-Means clustering is among the most successful clustering techniques available in the literature. The capacitated vehicle routing problem (CVRP) is one of the most studied NP-hard problems. CVRP has attracted the attention of many researchers due to its importance within the supply chain management field. This study aims to develop a fuzzy c-means clustering heuristic to efficiently solve the CVRP with large numbers of customers by using cluster-first route-second method (CFRS). CFRS is a two-phase technique, where in the first phase customers are grouped into, and in the second phase each cluster is solved independently as a traveling salesman problem (TSP). This work is concerned the clustering phase of the CFRS. The second phase of the CFRS method is solved using traditional optimization software. A modified demand weighted fuzzy c-means clustering algorithm is developed to solve the clustering phase. Twentyfive instances are solved to evaluate the efficiency of the proposed algorithm. Some of them are large instances with more than 500 customers. Promising results in terms of accuracy and processing time are obtained.
AbstractList Fuzzy C-Means clustering is among the most successful clustering techniques available in the literature. The capacitated vehicle routing problem (CVRP) is one of the most studied NP-hard problems. CVRP has attracted the attention of many researchers due to its importance within the supply chain management field. This study aims to develop a fuzzy c-means clustering heuristic to efficiently solve the CVRP with large numbers of customers by using cluster-first route-second method (CFRS). CFRS is a two-phase technique, where in the first phase customers are grouped into, and in the second phase each cluster is solved independently as a traveling salesman problem (TSP). This work is concerned the clustering phase of the CFRS. The second phase of the CFRS method is solved using traditional optimization software. A modified demand weighted fuzzy c-means clustering algorithm is developed to solve the clustering phase. Twentyfive instances are solved to evaluate the efficiency of the proposed algorithm. Some of them are large instances with more than 500 customers. Promising results in terms of accuracy and processing time are obtained.
Author Kassem, Sally
Wahby Shalaby, Mohamed A.
Mohammed, Ayman R.
Author_xml – sequence: 1
  givenname: Mohamed A.
  surname: Wahby Shalaby
  fullname: Wahby Shalaby, Mohamed A.
  organization: Cairo University,Faculty of computers & Artificial Intelligence
– sequence: 2
  givenname: Ayman R.
  surname: Mohammed
  fullname: Mohammed, Ayman R.
  organization: Smart Engineering Systems Research Center (SESC), School of Engineering & Applied Sciences, Nile University,Cairo,Egypt
– sequence: 3
  givenname: Sally
  surname: Kassem
  fullname: Kassem, Sally
  organization: Cairo University,Faculty of computers & Artificial Intelligence
BookMark eNotj91KwzAYQCPohc49gSB5gdb8mDa5LMHpYEPR6Y0XIz9fbKBrSpsJ29OruKtzdQ6cK3Tepx4QuqWkpJSou0YvN4JwzkpGGCkVJ4RIdobmqpa0ZpJKKQS_RJ_r5GOI4PFifzwesC7WYPoJ624_ZRhj_4WbYRiTcS3OCb-l7htwbgFrMxgXs8m_6ge00XWAX9M-_xkvY7Id7K7RRTDdBPMTZ-h98bDRT8Xq-XGpm1URKZW5kKCsoYK4ilHrKmsdqKpyLnhTex6CNZyK-0CF4kZQ51gtufSMeAKV9AH4DN38dyMAbIcx7sx42J6W-Q83wFIG
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACIT50332.2020.9300082
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728188553
1728188555
EndPage 7
ExternalDocumentID 9300082
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-8e9ba150c621bc6bbce966ccfda7d3ffba3154f1593a51cc27838d20d0e68dfe3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:06 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-8e9ba150c621bc6bbce966ccfda7d3ffba3154f1593a51cc27838d20d0e68dfe3
PageCount 7
ParticipantIDs ieee_primary_9300082
PublicationCentury 2000
PublicationDate 2020-Nov.-28
PublicationDateYYYYMMDD 2020-11-28
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2020 21st International Arab Conference on Information Technology (ACIT)
PublicationTitleAbbrev ACIT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7413898
Snippet Fuzzy C-Means clustering is among the most successful clustering techniques available in the literature. The capacitated vehicle routing problem (CVRP) is one...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Capacitated Vehicle Routing Problem
Clustering algorithms
Clustering methods
Fuzzy C-means
Fuzzy Clustering
Linear programming
Mathematical model
Optimization
Routing
Vehicle routing
Title Modified Fuzzy C-Means Clustering Approach to Solve the Capacitated Vehicle Routing Problem
URI https://ieeexplore.ieee.org/document/9300082
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MnlU38TQ4ezdY2XZseR3EouDFwysDDaJIXHIxVZjtwf70vXZkIXryFkEfIS-D7XpLvPYDbLBA2sb7hMswMDxX6XBFzpagVpQlF7Hmq2umneDyWs1kyacDdXguDiNXnM-y6ZvWWb3JduquyXiIqyGpCM46jnVarFv36XtIbpI9T9yjn5FWB160H_6qaUoHG8Oh_0x1D50d9xyZ7XDmBBq7a8DbKzcISX2TDcrv9YikfIaEMS5elS3VAA9mgTg_Oipw958sNMiJ3LCU01E5IRqav-O6OCXPfgJzFZFdNpgMvw_tp-sDrwgh8QfFAwSUmKiMmp6PAVzpSSiNFLVpbk8VGWKsyQczIElMRWd_X2lXTkCbwjIeRNBbFKbRW-QrPgClaS6iVtSExJ6N8RYzQZlL3hSFzJc-h7Rwz_9jlvpjXPrn4u_sSDp3vnVYvkFfQKtYlXsOB3hSLz_VNtWHf-Duajw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPRJZRN_mwcf7dY23ZY-juLYcBsDpwx8GE1ywcJYZbYD99d76cpE8MW3EHKE5ALfd0m-O4D72OcmNJ52RBBrJ5DoOZKYK0WtKHTAO64rC08PO-OxmM3CSQUedloYRCw-n2HDNou3fJ2q3F6VNUNeQNYe7LeCwHe3aq1S9uu5YbMbDab2Wc4KrHy3UQ7_VTelgI3e8f8mPIH6j_6OTXbIcgoVXNbgbZTqxBBjZL18s_likTNCwhkWLXKb7IAGsm6ZIJxlKXtOF2tkRO9YRHiorJSMTF_x3R4UZj8CWYvJtp5MHV56j9Oo75SlEZyEIoLMERjKmLicavueVG0pFVLcopTRcUdzY2TMiRsZ4io8bnlK2XoaQvuudrEttEF-BtVlusRzYJLWEihpTEDcSUtPEic0sVAtrslciguo2Y2Zf2yzX8zLPbn8u_sODvvT0XA-HIyfruDI-sEq93xxDdVsleMNHKh1lnyubgvnfQMur53W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+21st+International+Arab+Conference+on+Information+Technology+%28ACIT%29&rft.atitle=Modified+Fuzzy+C-Means+Clustering+Approach+to+Solve+the+Capacitated+Vehicle+Routing+Problem&rft.au=Wahby+Shalaby%2C+Mohamed+A.&rft.au=Mohammed%2C+Ayman+R.&rft.au=Kassem%2C+Sally&rft.date=2020-11-28&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FACIT50332.2020.9300082&rft.externalDocID=9300082