A Location-Aware hybrid beamforming system for High Speed Trains

High speed train (HST) has become one of the most popular ground transportations. Huge data streams are required to be transmitted to the base station (BS) for the HST. It is a particularly challenging problem due to the highly varying channels. Thanks to the development of 5G networks, millimeter-w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Wireless Communications and Signal Processing S. 1 - 5
Hauptverfasser: Shi, Xiaowen, Ma, Yuxin, Liu, Luohui, Han, Yi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 20.10.2021
Schlagworte:
ISSN:2472-7628
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract High speed train (HST) has become one of the most popular ground transportations. Huge data streams are required to be transmitted to the base station (BS) for the HST. It is a particularly challenging problem due to the highly varying channels. Thanks to the development of 5G networks, millimeter-wave (mmWave) beamforming can be employed to meet the requirement of the HST services. In this work, a location-aware beamforming technique is proposed for HST. More specifically, we divide this technique into two stages, namely localization and data transmission. In the first stage, a deep learning-based localization method is developed to acquire the position of the carriages. Next, a hybrid precoding system is leveraged to realize beamforming with a much smaller number of radio frequency (RF) chains. In addition, the quality of service (QoS) of each carriage is considered by formulating a difference of two convex (D.C.) programming problems. Finally, extensive simulations and experiments are conducted to demonstrate the effectiveness of our proposed location-aware hybrid beamforming system.
AbstractList High speed train (HST) has become one of the most popular ground transportations. Huge data streams are required to be transmitted to the base station (BS) for the HST. It is a particularly challenging problem due to the highly varying channels. Thanks to the development of 5G networks, millimeter-wave (mmWave) beamforming can be employed to meet the requirement of the HST services. In this work, a location-aware beamforming technique is proposed for HST. More specifically, we divide this technique into two stages, namely localization and data transmission. In the first stage, a deep learning-based localization method is developed to acquire the position of the carriages. Next, a hybrid precoding system is leveraged to realize beamforming with a much smaller number of radio frequency (RF) chains. In addition, the quality of service (QoS) of each carriage is considered by formulating a difference of two convex (D.C.) programming problems. Finally, extensive simulations and experiments are conducted to demonstrate the effectiveness of our proposed location-aware hybrid beamforming system.
Author Han, Yi
Ma, Yuxin
Liu, Luohui
Shi, Xiaowen
Author_xml – sequence: 1
  givenname: Xiaowen
  surname: Shi
  fullname: Shi, Xiaowen
  organization: Casco Singal, Ltd,Shanghai,China,200436
– sequence: 2
  givenname: Yuxin
  surname: Ma
  fullname: Ma, Yuxin
  organization: Casco Singal, Ltd,Shanghai,China,200436
– sequence: 3
  givenname: Luohui
  surname: Liu
  fullname: Liu, Luohui
  organization: Casco Singal, Ltd,Shanghai,China,200436
– sequence: 4
  givenname: Yi
  surname: Han
  fullname: Han, Yi
  email: hanyi@casco.com.cn
  organization: Casco Singal, Ltd,Shanghai,China,200436
BookMark eNotj8tKw0AUQEdRsNZ8gSDzA6n3znt2hmKtUFBoxWW5k8y0IyYpSUH69wp2dTibA-eWXXV9Fxl7QJghgn_8nK_ftVDazwQInHmDEhVcsMJbh8ZoBdZpdckmQllRWiPcDSvG8QsA0KD2Qk3YU8VXfU3H3Hdl9UND5PtTGHLDQ6Q29UObux0fT-MxtvxP-TLv9nx9iLHhm4FyN96x60TfYyzOnLKPxfNmvixXby-v82pVZkR3LF30JpGQodEIdQInG2MCGNUEgqQiAWhH3kmQOkiRrAjSQwiEqSayVk7Z_X83xxi3hyG3NJy252f5C0WDTJg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCSP52459.2021.9613140
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665407854
1665407859
EISSN 2472-7628
EndPage 5
ExternalDocumentID 9613140
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i118t-8e96fa23bd510cf083d66b064dba0f4ea0058a983035b32f72b390bba1fcaa773
IEDL.DBID RIE
IngestDate Wed Aug 27 05:00:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-8e96fa23bd510cf083d66b064dba0f4ea0058a983035b32f72b390bba1fcaa773
PageCount 5
ParticipantIDs ieee_primary_9613140
PublicationCentury 2000
PublicationDate 2021-Oct.-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-20
  day: 20
PublicationDecade 2020
PublicationTitle International Conference on Wireless Communications and Signal Processing
PublicationTitleAbbrev WCSP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615924
Score 2.1601093
Snippet High speed train (HST) has become one of the most popular ground transportations. Huge data streams are required to be transmitted to the base station (BS) for...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Array signal processing
D.C. Programming
High Speed Train
Hybrid Beamforming
Localization
Location awareness
Quality of service
Radio frequency
Radio transmitters
Signal processing algorithms
Wireless communication
Title A Location-Aware hybrid beamforming system for High Speed Trains
URI https://ieeexplore.ieee.org/document/9613140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAXH2DEV_bg0YW-ttu9SYjEAyEkoHIju-1s5CAQHhr_vbNtA5p48dY23TaZTfvNN7vffAB3lBNnQlrBY6uIoOgk48ZKw9PYR98kibK5D9lLXw4GyWSihhW432lhEDHffIYtd5iv5WeLdOtKZW1F2EOEoApVKeNCq7WvpxA0E5coRcC-p9qv3dFQBJFwcpTAb5WDf7mo5CDSO_7f60-gsVfjseEOZ06hgvMzOPrRSLAODx3WXxTFN9751Ctkb19OisUM6neXltJdrGjazOiUud0dbLSkJ7Kx84hYN-C59zjuPvHSG4HPiBJseIIqtjoITUYfVWopkcri2FB-kRnt2Qi18wvUKiGEEiYMrAxMqDxjtG9TraUMz6E2X8zxAhiKkGDaelpFRBdoFAYiQxHRVKG0qJtQd7GYLov2F9MyDJd_X76CQxdu93sPvGuobVZbvIGD9GMzW69u8zn7BqW4lzk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0gmqgXP9D47R48Wmi33bZ7kxAJxkpIQOVGdtvZyEEgfGj89862BDTx4q1tuk0zm_bNm903D-CGcuJMREY4oZFEUFScOdpE2klDDz0dx9LkPmQvSdRux_2-7JTgdqWFQcR88xlW7WG-lp-N04UtldUkYQ8Rgg3YFEHA3UKtta6oEDgTm1jKgD1X1l4b3Y7ggbCCFO5Vl8N_-ajkMNLc-98L7MPRWo_HOiukOYASjg5h90crwQrc1VkyLspvTv1TTZG9fVkxFtOo3m1iSnexom0zo1Nm93ew7oSeyHrWJWJ2BM_N-16j5SzdEZwhkYK5E6MMjeK-zuizSg2lUlkYasowMq1cE6CyjoFKxoRRQvvcRFz70tVaeSZVKor8YyiPxiM8AYbCJ6A2rpIBEQYahVxkKAKaLIwMqlOo2FgMJkUDjMEyDGd_X76G7VbvKRkkD-3Hc9ixobc_e-5eQHk-XeAlbKUf8-FsepXP3ze13pqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Wireless+Communications+and+Signal+Processing&rft.atitle=A+Location-Aware+hybrid+beamforming+system+for+High+Speed+Trains&rft.au=Shi%2C+Xiaowen&rft.au=Ma%2C+Yuxin&rft.au=Liu%2C+Luohui&rft.au=Han%2C+Yi&rft.date=2021-10-20&rft.pub=IEEE&rft.eissn=2472-7628&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FWCSP52459.2021.9613140&rft.externalDocID=9613140