Multi-Agent Reinforcement Learning using the Deep Distributed Distributional Deterministic Policy Gradients Algorithm

In this paper, the Deep Distributed Distributional Deterministic Policy Gradients (D4PG) reinforcement learning algorithm is adopted to train a multi-agent action in a cooperative game environment. The algorithm is experimented on training the agents to play a game of tennis against each other. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT) s. 1 - 6
Hlavní autor: Farag, Wael
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 20.12.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the Deep Distributed Distributional Deterministic Policy Gradients (D4PG) reinforcement learning algorithm is adopted to train a multi-agent action in a cooperative game environment. The algorithm is experimented on training the agents to play a game of tennis against each other. The architectures of the actor and cretic networks are meticulously designed and the D4PG hyperparameters are carefully tuned. The trained agents are successfully tested in the Unity Machine Learning Agents environment. The testing shows the powerful performance of the D4PG algorithm in training multi-agents in complex environments.
DOI:10.1109/3ICT51146.2020.9311945