Multi-Agent Reinforcement Learning using the Deep Distributed Distributional Deterministic Policy Gradients Algorithm
In this paper, the Deep Distributed Distributional Deterministic Policy Gradients (D4PG) reinforcement learning algorithm is adopted to train a multi-agent action in a cooperative game environment. The algorithm is experimented on training the agents to play a game of tennis against each other. The...
Saved in:
| Published in: | 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT) pp. 1 - 6 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
20.12.2020
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, the Deep Distributed Distributional Deterministic Policy Gradients (D4PG) reinforcement learning algorithm is adopted to train a multi-agent action in a cooperative game environment. The algorithm is experimented on training the agents to play a game of tennis against each other. The architectures of the actor and cretic networks are meticulously designed and the D4PG hyperparameters are carefully tuned. The trained agents are successfully tested in the Unity Machine Learning Agents environment. The testing shows the powerful performance of the D4PG algorithm in training multi-agents in complex environments. |
|---|---|
| AbstractList | In this paper, the Deep Distributed Distributional Deterministic Policy Gradients (D4PG) reinforcement learning algorithm is adopted to train a multi-agent action in a cooperative game environment. The algorithm is experimented on training the agents to play a game of tennis against each other. The architectures of the actor and cretic networks are meticulously designed and the D4PG hyperparameters are carefully tuned. The trained agents are successfully tested in the Unity Machine Learning Agents environment. The testing shows the powerful performance of the D4PG algorithm in training multi-agents in complex environments. |
| Author | Farag, Wael |
| Author_xml | – sequence: 1 givenname: Wael surname: Farag fullname: Farag, Wael email: wael.farag@aum.edu.kw organization: American University of the Middle East,College of Eng. & Tech.,Kuwait City,Kuwait |
| BookMark | eNpFUN1KwzAYjaAXOvcEguQFOvslbZpelk3noKLIvB5N-rX7oE1Hml7s7e1w4M35hXNxHtitGxwy9gzxCiDOX-RuvU8BErUSsYhXuQTIk_SGLfNMQyY05CqT4p5NH1MXKCpadIF_I7lm8Bb7iyux8o5cy6fxguGIfIN44hsagyczBaz_NQ2u6uY-oO_JzSlZ_jV0ZM9866ua5sGRF107eArH_pHdNVU34vLKC_bz9rpfv0fl53a3LsqIAHSItMVUCEhrYbU0dSwbYWJl8lTbukbUogEpDCZzDBqlUkJZkxhlNWYKrZAL9vS3S4h4OHnqK38-XM-Qvy01XI8 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/3ICT51146.2020.9311945 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728196732 1728196736 |
| EndPage | 6 |
| ExternalDocumentID | 9311945 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-8ce52215d2c83bd03f2b06b958cddee82f132be4f2b18e36626cb4b6c8e76ec23 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:04 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-8ce52215d2c83bd03f2b06b958cddee82f132be4f2b18e36626cb4b6c8e76ec23 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9311945 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Dec.-20 |
| PublicationDateYYYYMMDD | 2020-12-20 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-Dec.-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT) |
| PublicationTitleAbbrev | 3ICT |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7911773 |
| Snippet | In this paper, the Deep Distributed Distributional Deterministic Policy Gradients (D4PG) reinforcement learning algorithm is adopted to train a multi-agent... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | D4PG Games Informatics Machine Learning Machine learning algorithms Multi-Agent Policy-Gradients Methods Reinforcement learning Task analysis Technological innovation Training |
| Title | Multi-Agent Reinforcement Learning using the Deep Distributed Distributional Deterministic Policy Gradients Algorithm |
| URI | https://ieeexplore.ieee.org/document/9311945 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFG6AePCkBoyKmh48OujabW2PBERNDCEGDTdCuzckUSBj-Pt97RaIiRdvXddkSZu173v9vu8RcjdPlUiiTAQpN_6a0eAvhY9ahpmRzGrmy7e9v8jRSE2nelwj93stDAB48hl0XNPf5adru3Opsq4WIWLuuE7qUialVqsS_YZMd8VzfxI7kS2iPs461eBfVVP8oTE8-d_nTknroL6j4_25ckZqsGqSnVfKBj2nhKKv4P1OrU_t0coidUEdh31BMaKjA4ANHThPXFfOCtJD22f-8H1JgvEuzbT0BqaPuad_FVva-1ys82Xx8dUib8OHSf8pqEomBEtECkWgLGBAFcYpt0qYlImMG5YYHSuL-xgoniH6NBBhd6hAJAhnrIlMYhXIBCwX56SxWq_ggtCQZ9LGfG5shlGdDo3AWGOuXEgWIYbTl6Tppmy2KV0xZtVsXf3d3SbHblUcEYSza9Io8h3ckCP7XSy3-a1fyh9XyaNd |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuhJDRi_7cGjC912P9ojAREiEmLQcCO0O4skCmRZ_P22ZQMx8eKt222ySZtt503fewNwP0kEj4KUewlT7ppRmV_KPMrYT1VMtaSufNt7L-73xWgkByV42GphENGRz7Bmm-4uP1notU2V1SX3DeYO92DfVs4q1FqF7Nenss67zWFoZbYG9zFaK4b_qpvijo328f8-eALVnf6ODLYnyymUcF6BtdPKeg2rhSKv6BxPtUvukcIkdUosi31KTExHWohL0rKuuLagFSa7tsv9mfcbGozzaSYbd2DylDkCWL4ijc_pIpvlH19VeGs_Dpsdryia4M0MVsg9odGEVH6YMC24SihPmaKRkqHQZidDwVKDPxUGptsXyCMDaLQKVKQFxhFqxs-gPF_M8RyIz9JYh2yidGriOukrbqKNibBBWWBQnLyAip2y8XLjizEuZuvy7-47OOwMX3rjXrf_fAVHdoUsLYTRayjn2Rpv4EB_57NVduuW9QcE8qam |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+International+Conference+on+Innovation+and+Intelligence+for+Informatics%2C+Computing+and+Technologies+%283ICT%29&rft.atitle=Multi-Agent+Reinforcement+Learning+using+the+Deep+Distributed+Distributional+Deterministic+Policy+Gradients+Algorithm&rft.au=Farag%2C+Wael&rft.date=2020-12-20&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2F3ICT51146.2020.9311945&rft.externalDocID=9311945 |