Shuffle in 3D: A Lightweight Architecture for Stereo Matching
The deep learning-based stereo matching approaches commonly construct 3D cost volume with a Siamese network, and the 3D encoder-decoder architectures regularize 3D cost volume to generate disparity as output. Yet, the 3D encoder-decoder architectures produce tremendous parameters that causing huge t...
Uloženo v:
| Vydáno v: | 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE) s. 675 - 677 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
12.10.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The deep learning-based stereo matching approaches commonly construct 3D cost volume with a Siamese network, and the 3D encoder-decoder architectures regularize 3D cost volume to generate disparity as output. Yet, the 3D encoder-decoder architectures produce tremendous parameters that causing huge training and inference cost. In this paper, we propose a 3D ShuffleNet-based approach on PSMNet, which greatly saves the computational cost without losing without reducing the performance of the network. |
|---|---|
| DOI: | 10.1109/GCCE53005.2021.9622083 |