Multi-sensor Data Fusion Algorithm Based on Dempster-Shafer Theory

Aiming at the problem of uncertainty in multi-sensor data collection, a multi-sensor data fusion algorithm (MSDF) based on D-S theory is proposed. By calculating the distance between the data, the trust function is obtained to eliminate the abnormal data, calculate the basic probability distribution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 7th International Conference on Computer and Communications (ICCC) s. 288 - 293
Hlavní autoři: Li, Xiguang, Zhao, Yue, Fan, Chunlong, Qiu, Xinye
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 10.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aiming at the problem of uncertainty in multi-sensor data collection, a multi-sensor data fusion algorithm (MSDF) based on D-S theory is proposed. By calculating the distance between the data, the trust function is obtained to eliminate the abnormal data, calculate the basic probability distribution function for the correct data obtained as the original evidence body. The improved Deng entropy is used to quantify the uncertainty of the evidence body and form new evidence, which is fused according to the D-S theory. Computer simulation result shows that the algorithm effectively solves the high conflict problem in D-S theory and improves the accuracy of data fusion.
AbstractList Aiming at the problem of uncertainty in multi-sensor data collection, a multi-sensor data fusion algorithm (MSDF) based on D-S theory is proposed. By calculating the distance between the data, the trust function is obtained to eliminate the abnormal data, calculate the basic probability distribution function for the correct data obtained as the original evidence body. The improved Deng entropy is used to quantify the uncertainty of the evidence body and form new evidence, which is fused according to the D-S theory. Computer simulation result shows that the algorithm effectively solves the high conflict problem in D-S theory and improves the accuracy of data fusion.
Author Zhao, Yue
Li, Xiguang
Fan, Chunlong
Qiu, Xinye
Author_xml – sequence: 1
  givenname: Xiguang
  surname: Li
  fullname: Li, Xiguang
  email: lixiguang@sau.edu.cn
  organization: Shenyang Aerospace University School of Computer Science, Shenyang Aerospace University,Shenyang,China
– sequence: 2
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  email: zy06272525@163.com
  organization: Shenyang Aerospace University School of Computer Science, Shenyang Aerospace University,Shenyang,China
– sequence: 3
  givenname: Chunlong
  surname: Fan
  fullname: Fan, Chunlong
  email: FanCHL@sau.edu.cn
  organization: Shenyang Aerospace University School of Computer Science, Shenyang Aerospace University,Shenyang,China
– sequence: 4
  givenname: Xinye
  surname: Qiu
  fullname: Qiu, Xinye
  email: 616926509@qq.com
  organization: Shenyang Aerospace University School of Computer Science, Shenyang Aerospace University,Shenyang,China
BookMark eNotj8tKAzEYhSPoQmufQJC8wIzJ5L5sU1sLFRfWdclM_jiBuZRkuujbO2A5iwMfhw_OE7ofxgEQeqWkpJSYt721VnCmTVmRipZGKs6VvkNLozSVUnBiBJGPaP156aZYZBjymPDGTQ5vLzmOA151v2OKU9vjtcvg8Yw20J_zBKn4bl2AhI8tjOn6jB6C6zIsb71AP9v3o_0oDl-7vV0dikipngpdec2cDEZK7SrOgpLGzQHTsEB5wzUIwYAyxb2v6xpELZVoXOPnTR0IW6CXf28EgNM5xd6l6-n2jP0BaKtIyw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCC54389.2021.9674478
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665409506
1665409509
EndPage 293
ExternalDocumentID 9674478
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-82d83a6f9668a243f769a9a9e9c3f14c48e553e1374ddbbbe5b675cacda9ebf03
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:57 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-82d83a6f9668a243f769a9a9e9c3f14c48e553e1374ddbbbe5b675cacda9ebf03
PageCount 6
ParticipantIDs ieee_primary_9674478
PublicationCentury 2000
PublicationDate 2021-Dec.-10
PublicationDateYYYYMMDD 2021-12-10
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2021 7th International Conference on Computer and Communications (ICCC)
PublicationTitleAbbrev ICCC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.778851
Snippet Aiming at the problem of uncertainty in multi-sensor data collection, a multi-sensor data fusion algorithm (MSDF) based on D-S theory is proposed. By...
SourceID ieee
SourceType Publisher
StartPage 288
SubjectTerms Computer simulation
D-S evidence theory
Data collection
Data integration
Deng entropy
Entropy
Multi-sensor data fusion
Probability distribution
Quantitative uncertainty
Uncertainty
Title Multi-sensor Data Fusion Algorithm Based on Dempster-Shafer Theory
URI https://ieeexplore.ieee.org/document/9674478
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRtLubZJMc7dail1JQobeSx6wt2G7Zbv39JtulIniRXMIQEmZymPkm82UQus9zG3OjUgKCAWHaY1ZJDSWMglPcgEybZhNiMpGzmZq20MOBCwMAdfEZ9MO0fst3hd2FVNlApYIxIduoLYTYc7Ua0m8cqcFLlmU8NPP2qC-J-83iX11TaqcxPvnfcaeo98O-w9ODXzlDLVh30bBmypKtR51FiUe60ni8C5ku_Pj5UXiEv1jhofdIDnvRCFab8AECeV1ovyPeE_B76H389JY9k6b_AVn6sL8iMnGS6jT3iETqhNFcpEr7AcrSPGaWSeCcQkwFc84YA9z48N9q6_wak0f0HHXWxRouEI691SOdcGcsY8aHBVYJnaQm0iLJqbKXqBv0n2_2X1zMG9Wv_hZfo-Ng4lDVEUc3qFOVO7hFR_arWm7Lu_pevgF_spEY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSkBozf9uDRwnbbbtujoAQiEhIx4Ub6tUIiLIHF32-7bDAmXkwvzWTSptPD9LXz-gC4T1ODmZYJcpw6RJXHrIJogihxVjLtRFKKTfDBQIzHclgBDzsujHOuKD5zjdAt3vJtZjbhqqwpE04pF3tgn1Ea4y1bq6T94kg2e-12mwU5b4_7Ytwo3X_pphRpo3P8vwlPQP2HfweHu8xyCipuUQOtgiuL1h53Ziv4pHIFO5tw1wUfPz8yj_Gnc9jyOclCb3py82X4AgG9TZUfEW4p-HXw3nketbuoVEBAM3_wz5GIrSAqST0mESqmJOWJVL45aUiKqaHCMUYcJpxaq7V2THsAYJSx3kenETkD1UW2cOcAYh_3SMXMakOp9gcDI7mKEx0pHqdEmgtQC-ufLLefXEzKpV_-bb4Dh93Ra3_S7w1ersBRCHeo8cDRNajmq427AQfmK5-tV7fFHn0DPCCUXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+7th+International+Conference+on+Computer+and+Communications+%28ICCC%29&rft.atitle=Multi-sensor+Data+Fusion+Algorithm+Based+on+Dempster-Shafer+Theory&rft.au=Li%2C+Xiguang&rft.au=Zhao%2C+Yue&rft.au=Fan%2C+Chunlong&rft.au=Qiu%2C+Xinye&rft.date=2021-12-10&rft.pub=IEEE&rft.spage=288&rft.epage=293&rft_id=info:doi/10.1109%2FICCC54389.2021.9674478&rft.externalDocID=9674478