Multi-sensor Data Fusion Algorithm Based on Dempster-Shafer Theory
Aiming at the problem of uncertainty in multi-sensor data collection, a multi-sensor data fusion algorithm (MSDF) based on D-S theory is proposed. By calculating the distance between the data, the trust function is obtained to eliminate the abnormal data, calculate the basic probability distribution...
Uloženo v:
| Vydáno v: | 2021 7th International Conference on Computer and Communications (ICCC) s. 288 - 293 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
10.12.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Aiming at the problem of uncertainty in multi-sensor data collection, a multi-sensor data fusion algorithm (MSDF) based on D-S theory is proposed. By calculating the distance between the data, the trust function is obtained to eliminate the abnormal data, calculate the basic probability distribution function for the correct data obtained as the original evidence body. The improved Deng entropy is used to quantify the uncertainty of the evidence body and form new evidence, which is fused according to the D-S theory. Computer simulation result shows that the algorithm effectively solves the high conflict problem in D-S theory and improves the accuracy of data fusion. |
|---|---|
| DOI: | 10.1109/ICCC54389.2021.9674478 |