A Novel Machine Learning Approach for Link Adaptation in 5G Wireless Networks
This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system throughput by selecting the best possible choice of the Modulation Coding Scheme (MCS). This work proposes a Deep Neural Network(DNN) based regress...
Gespeichert in:
| Veröffentlicht in: | 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS) S. 1 - 2 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
08.11.2020
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system throughput by selecting the best possible choice of the Modulation Coding Scheme (MCS). This work proposes a Deep Neural Network(DNN) based regression model to maximize the Spectral Efficiency (SE) of the system under the 10% Block Error Rate (BLER) and thus finding the best MCS. We consider a 5G NR Frequency Range-1(FR-1), i.e., the Sub-6GHz operating band for the study. Our simulation results show the mapping of Signal to Interference and Noise Ratio (SINR) to the Channel Quality Indicator (CQI) and thus the best possible selection of modulation and coding scheme in case of perfect channel estimation based system which is found to improve the system throughput. |
|---|---|
| AbstractList | This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system throughput by selecting the best possible choice of the Modulation Coding Scheme (MCS). This work proposes a Deep Neural Network(DNN) based regression model to maximize the Spectral Efficiency (SE) of the system under the 10% Block Error Rate (BLER) and thus finding the best MCS. We consider a 5G NR Frequency Range-1(FR-1), i.e., the Sub-6GHz operating band for the study. Our simulation results show the mapping of Signal to Interference and Noise Ratio (SINR) to the Channel Quality Indicator (CQI) and thus the best possible selection of modulation and coding scheme in case of perfect channel estimation based system which is found to improve the system throughput. |
| Author | Sahoo, Shubham Somnath Krishnaswamy, Dilip Pati, Preeti Samhita Datta, Raja |
| Author_xml | – sequence: 1 givenname: Preeti Samhita surname: Pati fullname: Pati, Preeti Samhita email: preetispati@iitkgp.ac.in organization: IIT Kharagpur,Department of E&ECE,WestBengal,India – sequence: 2 givenname: Shubham Somnath surname: Sahoo fullname: Sahoo, Shubham Somnath email: shubhamsomnath@iitkgp.ac.in organization: IIT Kharagpur,Department of E&ECE,WestBengal,India – sequence: 3 givenname: Dilip surname: Krishnaswamy fullname: Krishnaswamy, Dilip email: dilip@ieee.org organization: Reliance Jio Platforms,Banglore,India – sequence: 4 givenname: Raja surname: Datta fullname: Datta, Raja email: rajadatta@ece.iitkgp.ac.in organization: IIT Kharagpur,Department of E&ECE,WestBengal,India |
| BookMark | eNotj11LwzAYhSPohZv7Bd4E71vzsbTJZdnmNuimsImXI0nfuLCalLQo_nsL7urAgefwnAm6DTEAQk-U5JQS9fx2Xq6W2-NBUCpJzggjueJUMKVu0ISWTFJVEFnco12F9_EbWrzT9uwD4Bp0Cj584qrrUhxL7GLCtQ8XXDW6G_TgY8A-YLHGHz5BC32P9zD8xHTpH9Cd020Ps2tO0fvL6rjYZPXreruo6syPPkNWWjdvBKMG5hyU5MRYqcBaVhpnpYSysYUzVAjgXMnGlcJoDbRRohg5Y_kUPf7vegA4dcl_6fR7uj7kf3Z9TSI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PhDEDITS51180.2020.9315299 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Libary (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728196086 9781728196084 |
| EndPage | 2 |
| ExternalDocumentID | 9315299 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-7cf4d521be43e9830bc89ecc27bfc88e7dc6fb155e3398df75baae1d9564d5bc3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:08 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-7cf4d521be43e9830bc89ecc27bfc88e7dc6fb155e3398df75baae1d9564d5bc3 |
| PageCount | 2 |
| ParticipantIDs | ieee_primary_9315299 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov.-8 |
| PublicationDateYYYYMMDD | 2020-11-08 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-8 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS) |
| PublicationTitleAbbrev | PhD EDITS |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7466795 |
| Snippet | This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Deep Neural Network (DNN) Interference Link Adaptation (LA) Mathematical model Modulation Modulation Coding Scheme (MCS) Signal to noise ratio Training data Wireless networks |
| Title | A Novel Machine Learning Approach for Link Adaptation in 5G Wireless Networks |
| URI | https://ieeexplore.ieee.org/document/9315299 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZt2WGnbbRjb3zYcWmTOI3tY1jbbYeGwjrorfihbIWSlr5-_2wndAx22c0YhLEElmTp-wTw6KABPExNIFJmExRjTKB0yALENMaIo5KJ9MMmWJ7z2UxMGvB0xMIgom8-w65b-lq-Wem9-yrrCWq9jRBNaDLGKqxWzSMahaI3-RoMB2_Tdxczhzbzi8NuLfBrcop3HKOz_x15Dp0fBB6ZHH3LBTSwbMM4I_nqgEsy9h2QSGpy1E-S1czgxIagxKWXJDNyXVXZyaIk_Rfi2lyX9lkjedX4ve3Ax2g4fX4N6nEIwcLeaBcwXSTGeluFCUXBaag0F9YCMVOF5hyZ0WmhbHyAlApuCtZXUmJkbAZk5ZSml9AqVyVeARERKpakMi5oP5EqEhgn6IK9lFsxyq6h7VQxX1eMF_NaCzd_b9_CqdO2R-jxO2jtNnu8hxN92C22mwdvpm_VSJWG |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_DotrubdJMci7W22C4FK_RWNsmsFsq29PX7TXaXiuDFWwgMITOQmcnM9w3Ao4MGCD8ynoy4TVCMMZ7SPvcQoxADgSphST5sgsexmEzkqAJPeywMIubNZ9hwy7yWbxZ6677KmpJabyPlARy2GAuDAq1VMokGvmyOvjovnf743UXNvs39Qr9RivyanZK7ju7p_w49g_oPBo-M9t7lHCqY1WDYJvFih3MyzHsgkZT0qJ-kXXKDExuEEpdgkrZJlkWdncwy0nolrtF1bh82Ehet3-s6fHRfxs89rxyI4M3sjTYe1ykz1t8qZBSloL7SQlobhFylWgjkRkepshECUiqFSXlLJQkGxuZAVk5pegHVbJHhJRAZoOIsSsKUtliiAokhQxfuRcKKUX4FNaeK6bLgvJiWWrj-e_sBjnvj4WA66MdvN3DiNJ_j9cQtVDerLd7Bkd5tZuvVfW6yb8xlmM0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+2nd+PhD+Colloquium+on+Ethically+Driven+Innovation+and+Technology+for+Society+%28PhD+EDITS%29&rft.atitle=A+Novel+Machine+Learning+Approach+for+Link+Adaptation+in+5G+Wireless+Networks&rft.au=Pati%2C+Preeti+Samhita&rft.au=Sahoo%2C+Shubham+Somnath&rft.au=Krishnaswamy%2C+Dilip&rft.au=Datta%2C+Raja&rft.date=2020-11-08&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FPhDEDITS51180.2020.9315299&rft.externalDocID=9315299 |