A Novel Machine Learning Approach for Link Adaptation in 5G Wireless Networks

This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system throughput by selecting the best possible choice of the Modulation Coding Scheme (MCS). This work proposes a Deep Neural Network(DNN) based regress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS) S. 1 - 2
Hauptverfasser: Pati, Preeti Samhita, Sahoo, Shubham Somnath, Krishnaswamy, Dilip, Datta, Raja
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 08.11.2020
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system throughput by selecting the best possible choice of the Modulation Coding Scheme (MCS). This work proposes a Deep Neural Network(DNN) based regression model to maximize the Spectral Efficiency (SE) of the system under the 10% Block Error Rate (BLER) and thus finding the best MCS. We consider a 5G NR Frequency Range-1(FR-1), i.e., the Sub-6GHz operating band for the study. Our simulation results show the mapping of Signal to Interference and Noise Ratio (SINR) to the Channel Quality Indicator (CQI) and thus the best possible selection of modulation and coding scheme in case of perfect channel estimation based system which is found to improve the system throughput.
AbstractList This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system throughput by selecting the best possible choice of the Modulation Coding Scheme (MCS). This work proposes a Deep Neural Network(DNN) based regression model to maximize the Spectral Efficiency (SE) of the system under the 10% Block Error Rate (BLER) and thus finding the best MCS. We consider a 5G NR Frequency Range-1(FR-1), i.e., the Sub-6GHz operating band for the study. Our simulation results show the mapping of Signal to Interference and Noise Ratio (SINR) to the Channel Quality Indicator (CQI) and thus the best possible selection of modulation and coding scheme in case of perfect channel estimation based system which is found to improve the system throughput.
Author Sahoo, Shubham Somnath
Krishnaswamy, Dilip
Pati, Preeti Samhita
Datta, Raja
Author_xml – sequence: 1
  givenname: Preeti Samhita
  surname: Pati
  fullname: Pati, Preeti Samhita
  email: preetispati@iitkgp.ac.in
  organization: IIT Kharagpur,Department of E&ECE,WestBengal,India
– sequence: 2
  givenname: Shubham Somnath
  surname: Sahoo
  fullname: Sahoo, Shubham Somnath
  email: shubhamsomnath@iitkgp.ac.in
  organization: IIT Kharagpur,Department of E&ECE,WestBengal,India
– sequence: 3
  givenname: Dilip
  surname: Krishnaswamy
  fullname: Krishnaswamy, Dilip
  email: dilip@ieee.org
  organization: Reliance Jio Platforms,Banglore,India
– sequence: 4
  givenname: Raja
  surname: Datta
  fullname: Datta, Raja
  email: rajadatta@ece.iitkgp.ac.in
  organization: IIT Kharagpur,Department of E&ECE,WestBengal,India
BookMark eNotj11LwzAYhSPohZv7Bd4E71vzsbTJZdnmNuimsImXI0nfuLCalLQo_nsL7urAgefwnAm6DTEAQk-U5JQS9fx2Xq6W2-NBUCpJzggjueJUMKVu0ISWTFJVEFnco12F9_EbWrzT9uwD4Bp0Cj584qrrUhxL7GLCtQ8XXDW6G_TgY8A-YLHGHz5BC32P9zD8xHTpH9Cd020Ps2tO0fvL6rjYZPXreruo6syPPkNWWjdvBKMG5hyU5MRYqcBaVhpnpYSysYUzVAjgXMnGlcJoDbRRohg5Y_kUPf7vegA4dcl_6fR7uj7kf3Z9TSI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PhDEDITS51180.2020.9315299
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728196086
9781728196084
EndPage 2
ExternalDocumentID 9315299
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-7cf4d521be43e9830bc89ecc27bfc88e7dc6fb155e3398df75baae1d9564d5bc3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:08 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-7cf4d521be43e9830bc89ecc27bfc88e7dc6fb155e3398df75baae1d9564d5bc3
PageCount 2
ParticipantIDs ieee_primary_9315299
PublicationCentury 2000
PublicationDate 2020-Nov.-8
PublicationDateYYYYMMDD 2020-11-08
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS)
PublicationTitleAbbrev PhD EDITS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7466795
Snippet This study addresses a Machine Learning (ML) based Link Adaptation (LA) scheme for 5G New Radio (NR) wireless networks, which aims to improve the system...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Deep Neural Network (DNN)
Interference
Link Adaptation (LA)
Mathematical model
Modulation
Modulation Coding Scheme (MCS)
Signal to noise ratio
Training data
Wireless networks
Title A Novel Machine Learning Approach for Link Adaptation in 5G Wireless Networks
URI https://ieeexplore.ieee.org/document/9315299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZt2WGnbbRjb3zYcWmTOI3tY1jbbYeGwjrorfihbIWSlr5-_2wndAx22c0YhLEElmTp-wTw6KABPExNIFJmExRjTKB0yALENMaIo5KJ9MMmWJ7z2UxMGvB0xMIgom8-w65b-lq-Wem9-yrrCWq9jRBNaDLGKqxWzSMahaI3-RoMB2_Tdxczhzbzi8NuLfBrcop3HKOz_x15Dp0fBB6ZHH3LBTSwbMM4I_nqgEsy9h2QSGpy1E-S1czgxIagxKWXJDNyXVXZyaIk_Rfi2lyX9lkjedX4ve3Ax2g4fX4N6nEIwcLeaBcwXSTGeluFCUXBaag0F9YCMVOF5hyZ0WmhbHyAlApuCtZXUmJkbAZk5ZSml9AqVyVeARERKpakMi5oP5EqEhgn6IK9lFsxyq6h7VQxX1eMF_NaCzd_b9_CqdO2R-jxO2jtNnu8hxN92C22mwdvpm_VSJWG
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_DotrubdJMci7W22C4FK_RWNsmsFsq29PX7TXaXiuDFWwgMITOQmcnM9w3Ao4MGCD8ynoy4TVCMMZ7SPvcQoxADgSphST5sgsexmEzkqAJPeywMIubNZ9hwy7yWbxZ6677KmpJabyPlARy2GAuDAq1VMokGvmyOvjovnf743UXNvs39Qr9RivyanZK7ju7p_w49g_oPBo-M9t7lHCqY1WDYJvFih3MyzHsgkZT0qJ-kXXKDExuEEpdgkrZJlkWdncwy0nolrtF1bh82Ehet3-s6fHRfxs89rxyI4M3sjTYe1ykz1t8qZBSloL7SQlobhFylWgjkRkepshECUiqFSXlLJQkGxuZAVk5pegHVbJHhJRAZoOIsSsKUtliiAokhQxfuRcKKUX4FNaeK6bLgvJiWWrj-e_sBjnvj4WA66MdvN3DiNJ_j9cQtVDerLd7Bkd5tZuvVfW6yb8xlmM0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+2nd+PhD+Colloquium+on+Ethically+Driven+Innovation+and+Technology+for+Society+%28PhD+EDITS%29&rft.atitle=A+Novel+Machine+Learning+Approach+for+Link+Adaptation+in+5G+Wireless+Networks&rft.au=Pati%2C+Preeti+Samhita&rft.au=Sahoo%2C+Shubham+Somnath&rft.au=Krishnaswamy%2C+Dilip&rft.au=Datta%2C+Raja&rft.date=2020-11-08&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FPhDEDITS51180.2020.9315299&rft.externalDocID=9315299