Multi-area Path Planning for Wireless Sensor Networks Based on Double Populations Ant Colony Optimization Algorithm
Aiming at the problem that the ant colony algorithm(ACO) is slow to converge and easily fall into the local optimal value in the path planning of multi-area wireless sensor networks(WSNs), an improved ant colony optimization algorithm is proposed. First, a grid method was used to model two different...
Uloženo v:
| Vydáno v: | 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics) s. 152 - 159 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2020
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Aiming at the problem that the ant colony algorithm(ACO) is slow to converge and easily fall into the local optimal value in the path planning of multi-area wireless sensor networks(WSNs), an improved ant colony optimization algorithm is proposed. First, a grid method was used to model two different obstacle environments. Second, to improve the efficiency of ant search in the early stages set a non-uniform initial pheromone concentration, and introduce new populations to expand the search space of the algorithm and avoid the algorithm falling into a local optimum. Finally, it is proposed that the elite ant pheromone update principle and adaptively adjusts the volatile coefficients to ensure the global search capability and improve the convergence speed of the algorithm. The experimental results show that the algorithm has a high global search capability and significantly faster convergence speed, which verifies the effectiveness and superiority of the algorithm. |
|---|---|
| AbstractList | Aiming at the problem that the ant colony algorithm(ACO) is slow to converge and easily fall into the local optimal value in the path planning of multi-area wireless sensor networks(WSNs), an improved ant colony optimization algorithm is proposed. First, a grid method was used to model two different obstacle environments. Second, to improve the efficiency of ant search in the early stages set a non-uniform initial pheromone concentration, and introduce new populations to expand the search space of the algorithm and avoid the algorithm falling into a local optimum. Finally, it is proposed that the elite ant pheromone update principle and adaptively adjusts the volatile coefficients to ensure the global search capability and improve the convergence speed of the algorithm. The experimental results show that the algorithm has a high global search capability and significantly faster convergence speed, which verifies the effectiveness and superiority of the algorithm. |
| Author | Fan, Bo Wang, Minghua Wang, Chao Jiang, Kaiwu Zhai, Chenxuan Wang, Yan |
| Author_xml | – sequence: 1 givenname: Chenxuan surname: Zhai fullname: Zhai, Chenxuan email: 18119357286@163.com organization: School of Electrical Engineering, University of South China,Hengyang,China – sequence: 2 givenname: Minghua surname: Wang fullname: Wang, Minghua email: wmh1013@126.com organization: School of Electrical Engineering, University of South China,Hengyang,China – sequence: 3 givenname: Kaiwu surname: Jiang fullname: Jiang, Kaiwu email: jkw8845@163.com organization: School of Electrical Engineering, University of South China,Hengyang,China – sequence: 4 givenname: Yan surname: Wang fullname: Wang, Yan email: wangyan5406@163.com organization: School of Electrical Engineering, University of South China,Hengyang,China – sequence: 5 givenname: Bo surname: Fan fullname: Fan, Bo email: fanbohysd@163.com organization: School of Electrical Engineering, University of South China,Hengyang,China – sequence: 6 givenname: Chao surname: Wang fullname: Wang, Chao email: wchao@163.com organization: School of Electrical Engineering, University of South China,Hengyang,China |
| BookMark | eNotUM1OAjEYrIkeFHkCL32Bxf7utkdcEE1QSMB4JGX3Axq7LWlLDD69689hMplMMpOZG3TpgweEppSMKCX63q4P1u9TMYsAvg5dUS9XP7TqTMwTk01Rn7cQO5NtkyThSo8YYWRECBH0Ag11pWjFepSiktcovZxctoWJYPDS5ANeOuN934B3IeJ3G8FBSngFPvX6FfJniB8JP5gELQ4eT8Jp6wAvw_Hk-srgEx77jOvggj_jxTHbzn79Gnjs9iHafOhu0dXOuATDfx6gt8fpun4q5ovZcz2eF5ZSlQvZkpJtG6kE19A2VGohBFRNWSrYSd1qxtqqbBtBgVWgmNT9KK7ahquGC8L4AN395VoA2Byj7S86bzTTVHLFvwFP8Wji |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00041 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISBN | 9781728176475 1728176476 |
| EndPage | 159 |
| ExternalDocumentID | 9291538 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hunan Provincial Innovation Foundation for Postgraduate grantid: CX20200933 funderid: 10.13039/501100010083 – fundername: National Natural Science Foundation of China grantid: 61971215,61871209 funderid: 10.13039/501100001809 – fundername: University of South China grantid: 2019KFZ12 funderid: 10.13039/501100009020 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-5d062bc58439edc159444e7c668ef59d922d76dc41e27e825917638dc38c34023 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:12 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-5d062bc58439edc159444e7c668ef59d922d76dc41e27e825917638dc38c34023 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9291538 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov. |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov. |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics) |
| PublicationTitleAbbrev | ITHINGS-GREENCOM-CPSCOM-SMARTDATA-CYBERMATICS |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.746153 |
| Snippet | Aiming at the problem that the ant colony algorithm(ACO) is slow to converge and easily fall into the local optimal value in the path planning of multi-area... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 152 |
| SubjectTerms | Ant Colony Optimization algorithms(ACO) Convergence Double Populations Ant Colony Optimization algorithms(DPACO) Electrical engineering Heuristic algorithms Path planning Sociology Statistics Wireless sensor networks Wireless Sensor Networks(WSNs) |
| Title | Multi-area Path Planning for Wireless Sensor Networks Based on Double Populations Ant Colony Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9291538 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7aIuLJRyu-2YNH1-a5SY41tniQGqhKbyX7iBbaRJpU6L93dhMrghdPeUBImGF2vi873wzAdeaJyOLKpkJYPvV8wShHVEE5t20W-mnmmz7br4_BeBxOp1HSgputFkYpZYrP1K0-NXv5shBr_ausj6lcB2gb2kEQ1FqtXRg2bTP783rSJTUFKxhNNE4m-jBZohPu0yql8YYrAwRFaRrLIT10LNOv0_41XMXkltH-_77qAHo_Ij2SbNPPIbRUfgR7GjzWvZe7UBp1LU0RF5IEkR75nlBEEKkSXfe6wHWOTJDJ4vW4LggvyR0mNkmKnCC45gt8yXbGV0kGeUViXC_zDXnCxWbZqDjJYPFWrObV-7IHL6Phc_xAmyELdI7coqK-tJjDBeIQN1JSILrxPE8FgrFQZX4kI8eRAZPCs5UTKOSTyO8wZqVwQ-Ei-XSPoZMXuToBwlhqc98RlsUzD-EwPsoyl4VZZglkJuIUutp6s4-6j8asMdzZ37fPYU-7p9b9XUCnWq3VJeyIT7Ti6so4_wsTmbTh |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gGuXkA4xv9-DRlT52l_aIVYIRKwlouJHudqskUAwUE_690y1iTLx46iNp2sx2Zr6vnW8G4CphyrektqlSFqeMK0ElogoqpW0Lj0cJN322XzuNMPQGA79bguu1FkZrbYrP9E2-a_7lx1O1yD-V1TGV5w66AZucMccu1FrbcL9qnFkfFbMuqSlZQX-iQbeXb3oTXIa7KItosJTaQEE1N63lkCA6lunYaf8ar2KyS2v3f8-1B7UfmR7prhPQPpR0egCVHD4W3ZerMDf6WhohMiRdxHrke0YRQaxK8srXMUY60kMui8dhURI-J7eY2mIyTQnCaznGm6ynfM1JM81IgBEzXZJnDDeTlY6TNMdv09koe5_U4KV13w_adDVmgY6QXWSUx5ZwpEIk4vo6VohvGGO6oYTwdML92HecuCFixWztNDQySmR46LWxcj3lIv10D6GcTlN9BESIyJbcUZYlE4aAGC8ViSu8JLEUchN1DNXcesOPopPGcGW4k79PX8JOu__UGXYewsdTqORLVagAz6CczRb6HLbUJ1p0dmFehC-iEbgo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+International+Conferences+on+Internet+of+Things+%28iThings%29+and+IEEE+Green+Computing+and+Communications+%28GreenCom%29+and+IEEE+Cyber%2C+Physical+and+Social+Computing+%28CPSCom%29+and+IEEE+Smart+Data+%28SmartData%29+and+IEEE+Congress+on+Cybermatics+%28Cybermatics%29&rft.atitle=Multi-area+Path+Planning+for+Wireless+Sensor+Networks+Based+on+Double+Populations+Ant+Colony+Optimization+Algorithm&rft.au=Zhai%2C+Chenxuan&rft.au=Wang%2C+Minghua&rft.au=Jiang%2C+Kaiwu&rft.au=Wang%2C+Yan&rft.date=2020-11-01&rft.pub=IEEE&rft.spage=152&rft.epage=159&rft_id=info:doi/10.1109%2FiThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00041&rft.externalDocID=9291538 |