AE2-Nets: Autoencoder in Autoencoder Networks

Learning on data represented with multiple views (e.g., multiple types of descriptors or modalities) is a rapidly growing direction in machine learning and computer vision. Although effectiveness achieved, most existing algorithms usually focus on classification or clustering tasks. Differently, in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 2572 - 2580
Hlavní autoři: Zhang, Changqing, Liu, Yeqing, Fu, Huazhu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2019
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Learning on data represented with multiple views (e.g., multiple types of descriptors or modalities) is a rapidly growing direction in machine learning and computer vision. Although effectiveness achieved, most existing algorithms usually focus on classification or clustering tasks. Differently, in this paper, we focus on unsupervised representation learning and propose a novel framework termed Autoencoder in Autoencoder Networks (AE^2-Nets), which integrates information from heterogeneous sources into an intact representation by the nested autoencoder framework. The proposed method has the following merits: (1) our model jointly performs view-specific representation learning (with the inner autoencoder networks) and multi-view information encoding (with the outer autoencoder networks) in a unified framework; (2) due to the degradation process from the latent representation to each single view, our model flexibly balances the complementarity and consistence among multiple views. The proposed model is efficiently solved by the alternating direction method (ADM), and demonstrates the effectiveness compared with state-of-the-art algorithms.
AbstractList Learning on data represented with multiple views (e.g., multiple types of descriptors or modalities) is a rapidly growing direction in machine learning and computer vision. Although effectiveness achieved, most existing algorithms usually focus on classification or clustering tasks. Differently, in this paper, we focus on unsupervised representation learning and propose a novel framework termed Autoencoder in Autoencoder Networks (AE^2-Nets), which integrates information from heterogeneous sources into an intact representation by the nested autoencoder framework. The proposed method has the following merits: (1) our model jointly performs view-specific representation learning (with the inner autoencoder networks) and multi-view information encoding (with the outer autoencoder networks) in a unified framework; (2) due to the degradation process from the latent representation to each single view, our model flexibly balances the complementarity and consistence among multiple views. The proposed model is efficiently solved by the alternating direction method (ADM), and demonstrates the effectiveness compared with state-of-the-art algorithms.
Author Liu, Yeqing
Fu, Huazhu
Zhang, Changqing
Author_xml – sequence: 1
  givenname: Changqing
  surname: Zhang
  fullname: Zhang, Changqing
  organization: Tianjin Univ
– sequence: 2
  givenname: Yeqing
  surname: Liu
  fullname: Liu, Yeqing
  organization: Tianjin Univ
– sequence: 3
  givenname: Huazhu
  surname: Fu
  fullname: Fu, Huazhu
  organization: Inception Institute of Artificial Intelligence
BookMark eNpVjUtLxDAURqMoOI5du3AzfyA196Z5XHeljA8YVETdDkl6C_XRSlMR_70DunH1ceBwvmNxMIwDC3EKqgRQdN483z-UqIBKpdD6PVGQ8-DQg0bSfl8sQFktLQEdiSLnF6WURgBLfiFkvUZ5y3O-WNWf88hDGlueVv3wD3fC1zi95hNx2IW3zMXfLsXT5fqxuZabu6ubpt7IHsDP0oSAnqrkEFG3hnZX0XU-RWNcVRlMpkrE0HZs2UB0wYC10UG0XVRaJ70UZ7_dnpm3H1P_HqbvrSejyZL-AQyYQ30
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00268
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132938
1728132932
EISSN 1063-6919
EndPage 2580
ExternalDocumentID 8953969
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i118t-5aa2894c72223d59169b7f8cb5574452c54c9e1dfe6e51b7a5166b71b6fb033c3
IEDL.DBID RIE
IngestDate Wed Aug 27 07:44:55 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-5aa2894c72223d59169b7f8cb5574452c54c9e1dfe6e51b7a5166b71b6fb033c3
PageCount 9
ParticipantIDs ieee_primary_8953969
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.5454638
Snippet Learning on data represented with multiple views (e.g., multiple types of descriptors or modalities) is a rapidly growing direction in machine learning and...
SourceID ieee
SourceType Publisher
StartPage 2572
SubjectTerms Autoencoders
Computer vision
Data mining
Data models
Degradation
Encoding
Feature extraction
Machine learning algorithms
Neural networks
Representation learning
Statistical Learning
Title AE2-Nets: Autoencoder in Autoencoder Networks
URI https://ieeexplore.ieee.org/document/8953969
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxVgZGTOM4frFVVSsGFFUIqm5VbF-kLilqEn4_cRIVkFjYbA-2zifrHv7uO4B7zpxWmYxImHFHYpkqojCmxISu1jbqLGzAmKsXmSRqvdbLHjwcamEQsQGf4aMfNn_5bmcrnyqbKM2ZFroPfSlFW6t1yKewOpIRWnXsPTTUk9lq-eqxW56QMvJUqj_apzTWYzH837knMP4uwwuWBwNzCj3Mz2DY-Y1B9yqLEZDpPCIJlsVTMK3KnaemdLgPtvmvadICvosxvC_mb7Nn0rVBINva-y8JT9M6Koqt9Kbc8dqf00ZmyhrOZRzzyPLYaqQuQ4GcGplyKoSR1IjMhIxZdg6DfJfjBQQq9fRllolU0VhK32WMYq2pek-pXKQvYeSl33y0TBebTvCrv5ev4dhfbwucuoFBua_wFo7sZ7kt9neNer4AjCWOow
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNNETKhi_3cGjlXVbv7wRAsGICzFIuJG1fUu4DMOGf7_rWFATL97aHtq8vjTvo7_3ewD3LLRKpiIgfsosiUQiicSIEu3bUtuoUr8CY87GIo7lfK4mDXjY1cIgYgU-w0c3rP7y7cpsXKqsKxULFVd7sO86Z9XVWruMSljGMlzJmr-H-qrbn03eHHrLUVIGjkz1RwOVyn4MW_87-Rg634V43mRnYk6ggdkptGrP0avfZd4G0hsEJMYif_J6m2LlyCktrr1l9msabyHfeQfeh4Npf0TqRghkWfr_BWFJUsZFkRHOmFtWenRKi1QazZiIIhYYFhmF1KbIkVEtEkY514Jqnmo_DE14Bs1sleE5eDJxBGYm5ImkkRCuzxjFUlflnkLaQF1A20m_-NhyXSxqwS__Xr6Dw9H0dbwYP8cvV3DkrnoLo7qGZrHe4A0cmM9ima9vK1V9AS_rkew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=AE2-Nets%3A+Autoencoder+in+Autoencoder+Networks&rft.au=Zhang%2C+Changqing&rft.au=Liu%2C+Yeqing&rft.au=Fu%2C+Huazhu&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2572&rft.epage=2580&rft_id=info:doi/10.1109%2FCVPR.2019.00268&rft.externalDocID=8953969