Deep Residual Convolutional Sparse Coding Networks for Low Dose CT Imaging

With the explosion of deep learning algorithms, big data, and high-performance computing, deep learning has flourished in the fields of medical analysis and image processing. In this paper, we present a simple yet effective model for low dose computed tomography (CT) image processing procedure, by c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) s. 1 - 6
Hlavní autori: Liu, Jin, Xia, Zhenyu, Kang, Yanqin, Qiang, Jun
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 23.10.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the explosion of deep learning algorithms, big data, and high-performance computing, deep learning has flourished in the fields of medical analysis and image processing. In this paper, we present a simple yet effective model for low dose computed tomography (CT) image processing procedure, by combining with the advantages of residual convolution network and convolutional sparse coding (DRCSC). Through the learned iterative shrinkage threshold algorithm (LISTA), we extend convolutional sparse coding to its convolutional learning from and entirely following the residual convolution network structure, which improves the network's interpretability. The network workflow consists of three components: input feature maps prepare, recursive manner for feature maps learning by convolutional sparse coding, and high-frequency information recover. Within the residual learning strategy, the deep network training become easier and preservation more detail feature. Experiments on AAPM datasets has shown the efficacy of our method. Network testing results identify that the proposed method can restrain of artifacts and noise oscillations for low dose CT imaging.
AbstractList With the explosion of deep learning algorithms, big data, and high-performance computing, deep learning has flourished in the fields of medical analysis and image processing. In this paper, we present a simple yet effective model for low dose computed tomography (CT) image processing procedure, by combining with the advantages of residual convolution network and convolutional sparse coding (DRCSC). Through the learned iterative shrinkage threshold algorithm (LISTA), we extend convolutional sparse coding to its convolutional learning from and entirely following the residual convolution network structure, which improves the network's interpretability. The network workflow consists of three components: input feature maps prepare, recursive manner for feature maps learning by convolutional sparse coding, and high-frequency information recover. Within the residual learning strategy, the deep network training become easier and preservation more detail feature. Experiments on AAPM datasets has shown the efficacy of our method. Network testing results identify that the proposed method can restrain of artifacts and noise oscillations for low dose CT imaging.
Author Qiang, Jun
Liu, Jin
Xia, Zhenyu
Kang, Yanqin
Author_xml – sequence: 1
  givenname: Jin
  surname: Liu
  fullname: Liu, Jin
  organization: Anhui Polytechnic University,College of Computer and Information,Wuhu,China
– sequence: 2
  givenname: Zhenyu
  surname: Xia
  fullname: Xia, Zhenyu
  organization: Anhui Polytechnic University,College of Computer and Information,Wuhu,China
– sequence: 3
  givenname: Yanqin
  surname: Kang
  fullname: Kang, Yanqin
  organization: Anhui Polytechnic University,College of Computer and Information,Wuhu,China
– sequence: 4
  givenname: Jun
  surname: Qiang
  fullname: Qiang, Jun
  organization: Anhui Polytechnic University,College of Computer and Information,Wuhu,China
BookMark eNotj01Pg0AYhNdED1r7C7xs4hl89xP2qLRWDH7E1nOzwLvNRsoSoDb-ezH2NJlnJpPMFTlvQ4uE3DKIGQNzl-Xr9-jhZZkrobmJOXAWG82l0MkZmZskZVorCQBSX5LnBWJHP3Dw9cE2NAvtd2gOow_t5Nad7QecYO3bHX3F8Rj6r4G60NMiHOki_IUbmu_tbipckwtnmwHnJ52Rz8flJnuKirdVnt0XkWcsHSNZGXCVrm2SIi-V5I6hA6tKVk9gIoZBWRlhZWq0YqVKE1EmBjQgSKydmJGb_12PiNuu93vb_2xPD8UvS-hL2A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISP-BMEI53629.2021.9624367
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665400046
1665400048
EndPage 6
ExternalDocumentID 9624367
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation
  grantid: 61801003
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-4c90fc6da78e2b542f1ef0a5b1d8e22b5910bc93a489651b5873b79060e04edf3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-4c90fc6da78e2b542f1ef0a5b1d8e22b5910bc93a489651b5873b79060e04edf3
PageCount 6
ParticipantIDs ieee_primary_9624367
PublicationCentury 2000
PublicationDate 2021-Oct.-23
PublicationDateYYYYMMDD 2021-10-23
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-23
  day: 23
PublicationDecade 2020
PublicationTitle 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
PublicationTitleAbbrev CISP-BMEI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7739226
Snippet With the explosion of deep learning algorithms, big data, and high-performance computing, deep learning has flourished in the fields of medical analysis and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computed tomography
Convolution
Convolutional codes
convolutional sparse coding
Deep learning
Image coding
low dose CT
noise-artifacts
Protocols
residual network
Training
Title Deep Residual Convolutional Sparse Coding Networks for Low Dose CT Imaging
URI https://ieeexplore.ieee.org/document/9624367
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qEfGk0opvAno07e4mm2yu9oEVLcVW6K1kkwn0YFv68u-bbJeK4MVb8iVDYBIyM0m-DMBDuCJ0LmU00YpRLpmhGeqYWm-crUFlLGZFsgnZ72fjsRpU4HHPhUHE4vEZNkKxuMu3c7MJR2VNJRLOhDyAAynFjqt1BPflt5nNVm84oE9vnV7qN-XAQUniRinxK3VKYTm6J_8b8xTqPxQ8MtgblzOo4KwGL23EBXnHVcGgIr7rtlw5vjZc-BgVPRgESH_3vHtFvFNKXudfpD0PjSPS-yzyEtXho9sZtZ5pmQyBTn0MsKbcqMgZYbXMMMlTnrgYXaTTPLYe8Ii3-7lRTPNMiTTO00yyXKpIRBhxtI6dQ3U2n-EFEIy55kZq58NT7lyUS-uM9o5YljsphLqEWtDDZLH772JSquDqb_gajoOqw36esBuorpcbvIVDs11PV8u7YpK-AUAhlI4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa1GvWkpjW-JdGj1N2FXZarfaSr7aaxNemtYWFIerDb9OXfF7abGhMv3mCAkAxkhgG--RB6dE-ExoSUBFJQwjhVJAbpE22ds1YglIa4IJvgaRqPx2JQQU87LAwAFJ_PoOGKxVu-ztXaXZU9iyhgNOJ7aN8xZ5VorUP0UCbOfG4mwwF56beT0Jplh0IJ_EY55hd5SuE7Oif_m_UU1X9AeHiwcy9nqAKzGnptAczxOywLDBW2XTfl3rG14dxGqWCFbgBOtx-8l9geS3Ev_8Kt3DWOcPJZMBPV0UenPWp2SUmHQKY2ClgRpoRnVKQljyHIQhYYH4wnw8zXVmAl1vNnSlDJYhGFfhbGnGZceJEHHgNt6DmqzvIZXCAMPpNMcWlsgMqM8TKujZL2KBZnhkeRuEQ1p4fJfJvxYlKq4Opv8T066o76vUkvSd-u0bFTu7PuAb1B1dViDbfoQG1W0-Xirliwby59l9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+14th+International+Congress+on+Image+and+Signal+Processing%2C+BioMedical+Engineering+and+Informatics+%28CISP-BMEI%29&rft.atitle=Deep+Residual+Convolutional+Sparse+Coding+Networks+for+Low+Dose+CT+Imaging&rft.au=Liu%2C+Jin&rft.au=Xia%2C+Zhenyu&rft.au=Kang%2C+Yanqin&rft.au=Qiang%2C+Jun&rft.date=2021-10-23&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCISP-BMEI53629.2021.9624367&rft.externalDocID=9624367