Polynomial Rabin Cryptosystem Based on the Operation of Addition

The analysis of the existing asymmetric encryption / decryption algorithms is carried out, their advantages and disadvantages are determined on the basis of this analysis in the paper. Mathematical and algorithmic support for the implementation of a polynomial Rabin cryptosystem based on addition wi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International Conference on Advanced Computer Information Technologies (Print) s. 345 - 350
Hlavní autori: Yakymenko, Igor, Kasianchuk, Mykhailo, Shylinska, Inna, Shevchuk, Ruslan, Yatskiv, Vasyl, Karpinski, Mikolaj
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 26.09.2022
Predmet:
ISBN:9781665410496, 1665410493
ISSN:2770-5218
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The analysis of the existing asymmetric encryption / decryption algorithms is carried out, their advantages and disadvantages are determined on the basis of this analysis in the paper. Mathematical and algorithmic support for the implementation of a polynomial Rabin cryptosystem based on addition without computationally costly arithmetic operations is presented. This allows us to develop reliable and effective systems for protecting information flows by increasing the dimensions of input parameters (key size, message size), while improving the robustness of the cryptosystem. The encryption / decryption scheme of a polynomial Rabin cryptosystem applying addition is presented. Analytical expressions of time complexity of the classical and proposed approaches to the implementation of the Rabin cryptosystem in the polynomial ring are obtained. Graphical dependences of the found complexities on the degrees of polynomials are given, which show the advantages of the developed method.
AbstractList The analysis of the existing asymmetric encryption / decryption algorithms is carried out, their advantages and disadvantages are determined on the basis of this analysis in the paper. Mathematical and algorithmic support for the implementation of a polynomial Rabin cryptosystem based on addition without computationally costly arithmetic operations is presented. This allows us to develop reliable and effective systems for protecting information flows by increasing the dimensions of input parameters (key size, message size), while improving the robustness of the cryptosystem. The encryption / decryption scheme of a polynomial Rabin cryptosystem applying addition is presented. Analytical expressions of time complexity of the classical and proposed approaches to the implementation of the Rabin cryptosystem in the polynomial ring are obtained. Graphical dependences of the found complexities on the degrees of polynomials are given, which show the advantages of the developed method.
Author Yakymenko, Igor
Karpinski, Mikolaj
Kasianchuk, Mykhailo
Shylinska, Inna
Shevchuk, Ruslan
Yatskiv, Vasyl
Author_xml – sequence: 1
  givenname: Igor
  surname: Yakymenko
  fullname: Yakymenko, Igor
  email: iyakymenko@ukr.net
  organization: West Ukrainian National University,Department of Cyber Security,Ternopil,Ukraine
– sequence: 2
  givenname: Mykhailo
  surname: Kasianchuk
  fullname: Kasianchuk, Mykhailo
  email: kasyanchuk@ukr.net
  organization: West Ukrainian National University,Department of Cyber Security,Ternopil,Ukraine
– sequence: 3
  givenname: Inna
  surname: Shylinska
  fullname: Shylinska, Inna
  email: inna.shylinska2012@gmail.com
  organization: West Ukrainian National University,Foreign Languages and Information Communication Technnologies Department,Ternopil,Ukraine
– sequence: 4
  givenname: Ruslan
  surname: Shevchuk
  fullname: Shevchuk, Ruslan
  email: rulezz.sh@gmail.com
  organization: West Ukrainian National University,Department of Computer Science,Ternopil,Ukraine
– sequence: 5
  givenname: Vasyl
  surname: Yatskiv
  fullname: Yatskiv, Vasyl
  email: jazkiv@ukr.net
  organization: West Ukrainian National University,Department of Cyber Security,Ternopil,Ukraine
– sequence: 6
  givenname: Mikolaj
  surname: Karpinski
  fullname: Karpinski, Mikolaj
  email: mkarpinski@ath.bielsko.pl
  organization: Automatics University of Bielsko-Biala,Department of Computer Science,Bielsko-Biala,Poland
BookMark eNpNkM1Kw0AURkesYK15AkHmBRLvvXOTyeyMoWqhUJG6LpNkgiP5I8kmb69iF67Odzbf4tyIVdd3Toh7hAgRzEOW744xp6AiAqLIGFSQmgsRGJ1iksSMEANd_nc2yUqsSWsIY8L0WgTT9AUAioCB1Vo8vvXN0vWtt418t4XvZD4uw9xPyzS7Vj7ZyVWy7-T86eRhcKOd_Y_1tcyqyv_uW3FV22ZywZkb8fG8Peav4f7wssuzfegR0znkwhAbLnUZG1eawlHJxAlC5SoFuuICkyJlbYlrpVEDkCoTjJEMW21IbcTd3693zp2G0bd2XE7nBuobaZtORQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACIT54803.2022.9913089
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665410502
1665410507
EndPage 350
ExternalDocumentID 9913089
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-4b92494c7c59ec9be2c424610ded307d4b16b847a24f37170023c6151294a7923
IEDL.DBID RIE
ISBN 9781665410496
1665410493
ISSN 2770-5218
IngestDate Wed Aug 27 02:54:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-4b92494c7c59ec9be2c424610ded307d4b16b847a24f37170023c6151294a7923
PageCount 6
ParticipantIDs ieee_primary_9913089
PublicationCentury 2000
PublicationDate 2022-Sept.-26
PublicationDateYYYYMMDD 2022-09-26
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-26
  day: 26
PublicationDecade 2020
PublicationTitle International Conference on Advanced Computer Information Technologies (Print)
PublicationTitleAbbrev ACIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204043
Score 1.8078926
Snippet The analysis of the existing asymmetric encryption / decryption algorithms is carried out, their advantages and disadvantages are determined on the basis of...
SourceID ieee
SourceType Publisher
StartPage 345
SubjectTerms Arithmetic
Chinese Remainder Theorem
Complexity theory
Encryption
encryption / decryption process
Information security
Information technology
modular inverse
polynomial ring
quadratic residue
Rabin cryptosystem
Robustness
Time complexity
Title Polynomial Rabin Cryptosystem Based on the Operation of Addition
URI https://ieeexplore.ieee.org/document/9913089
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zePCksom_ycGj2doka5qbczj0ModM2G3kJwxGO2Yn7L83X1onghdvbS9tmpT3vfR77yF0F1CP-oGlxHqbEU5TTaRVnijmIXA1CRiex7AJMZnk87mcttD9XgvjnIvNZ64Hh_Ffvi3NFrbK-qGWYUkuD9CBEFmt1drvpzCagFEMZMkJkQR-leag44Jw3cA4JGvsnb7Ps0YtnCayPxy9zMD2jAW6SGmvucuvuJWINuPj_z3nCer-yPbwdA9Ip6jlig56mJarHWiP1Qq_qcCD8WizW1dlbeGMHwOKWVwWOBSC-HXt6gWBS4-H1sZ2ri56Hz_NRs-kiU0gy8AWKsI1cCpuhBlIZ6R21HBwjUuss-GLtlynmQ6gpCgP8wH-fJSZLCI_V2AneIbaRVm4c4Qll54PBDPGC26108ZbJZhmoS4zKjUXqAOjX6xrZ4xFM_DLvy9foSN4wdBtQbNr1K42W3eDDs1ntfzY3Mbp_ALYFJkU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAFHxBNNGTGjB-uwePFtvdpWVvIpFARCQGE25kPxMS0hIsJvx795WKMfHire2l3e4282b7Zgbg1qMedU1DA-NMHHAaqUAY6QLJHAauhh7DW0XYRDIctiYTMarA3VYLY60tms9sAw-Lf_km0yvcKrv3tQwLW2IHdjE5q1RrbXdUGA3RKgbT5JIk9AwraqGSC-N1PecQrDR4-j6PS71wFIr7dqc_RuMz5gkjpY3yPr8CVwq86R7-70mPoP4j3COjLSQdQ8WmNXgYZfM1qo_lnLxJz4RJZ7le5NnGxJk8ehwzJEuJLwXJ68JulgTJHGkbUzR01eG9-zTu9IIyOCGYeb6QB1whq-I60U1htVCWao6-caGxxn_ThqsoVh6WJOV-RtChjzIdF9jPJRoKnkA1zVJ7CkRw4XgzYVq7hBtllXZGJkwxX5lpGekzqOHop4uNN8a0HPj535dvYL83fhlMB_3h8wUc4MvG3gsaX0I1X67sFezpz3z2sbwupvYLCuucXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Computer+Information+Technologies+%28Print%29&rft.atitle=Polynomial+Rabin+Cryptosystem+Based+on+the+Operation+of+Addition&rft.au=Yakymenko%2C+Igor&rft.au=Kasianchuk%2C+Mykhailo&rft.au=Shylinska%2C+Inna&rft.au=Shevchuk%2C+Ruslan&rft.date=2022-09-26&rft.pub=IEEE&rft.isbn=9781665410496&rft.issn=2770-5218&rft.spage=345&rft.epage=350&rft_id=info:doi/10.1109%2FACIT54803.2022.9913089&rft.externalDocID=9913089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2770-5218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2770-5218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2770-5218&client=summon