Development of Obstacle Avoidance for Autonomous Vehicles and an Optimization Scheme for the Artificial Potential Field Method

The research on the driving process of autonomous vehicles involves the combination of multiple subjects including sensor perception, artificial intelligence, high-precision map, and intelligent obstacle avoidance, which is an important development direction of current road driving. To achieve the p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 2nd International Conference on Computing and Data Science (CDS) s. 12 - 18
Hlavní autor: Yang, Xuefei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The research on the driving process of autonomous vehicles involves the combination of multiple subjects including sensor perception, artificial intelligence, high-precision map, and intelligent obstacle avoidance, which is an important development direction of current road driving. To achieve the purpose of autonomous driving without human control, the high adaptability and robustness of the vehicle, as well as the ability to identify and avoid obstacles while driving are required. The purpose of this paper is to study the development process of the obstacle avoidance system for autonomous vehicles and propose an optimization scheme for the obstacle avoidance algorithm.
AbstractList The research on the driving process of autonomous vehicles involves the combination of multiple subjects including sensor perception, artificial intelligence, high-precision map, and intelligent obstacle avoidance, which is an important development direction of current road driving. To achieve the purpose of autonomous driving without human control, the high adaptability and robustness of the vehicle, as well as the ability to identify and avoid obstacles while driving are required. The purpose of this paper is to study the development process of the obstacle avoidance system for autonomous vehicles and propose an optimization scheme for the obstacle avoidance algorithm.
Author Yang, Xuefei
Author_xml – sequence: 1
  givenname: Xuefei
  surname: Yang
  fullname: Yang, Xuefei
  email: yxf201762005@mail.dlut.edu.cn
  organization: School of Mechanical Engineering, Dalian University of Technology,Dalian,China
BookMark eNotjcFOwzAQRI0EB1r4gl78Ay1rJ3HiY9RSQCoqUoFrtbXXiqXErhK3Ehz4doLKYTRzmHkzYdchBmJsJmAhBOiH5WpXSCjlQoIUCwAQcMUmQqkih1xWcMt-VnSmNh47ColHx7eHIaFpidfn6C0GQ9zFntenFEPs4mngn9T4sTBwDHYU3x6T7_w3Jh8D35mGusskNSOkT95547HlbzGNF39p7am1_JVSE-0du3HYDnT_71P2sX58Xz7PN9unl2W9mXshqjTPwRV0QMqUBOPAGqoEugpIWgWlyjRKJUuNuqg0SbBgCSSIwhwAM9Qmm7LZheuJaH_sfYf9117nKpNaZL-DjF0B
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CDS52072.2021.00010
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665404280
9781665404280
EndPage 18
ExternalDocumentID 9463291
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-40f5ebae3620cf0dce81af80e2d607639a26279a9589e20d0de02015cb0a3a9c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:46 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-40f5ebae3620cf0dce81af80e2d607639a26279a9589e20d0de02015cb0a3a9c3
PageCount 7
ParticipantIDs ieee_primary_9463291
PublicationCentury 2000
PublicationDate 2021-Jan.
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationTitle 2021 2nd International Conference on Computing and Data Science (CDS)
PublicationTitleAbbrev CDS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7450973
Snippet The research on the driving process of autonomous vehicles involves the combination of multiple subjects including sensor perception, artificial intelligence,...
SourceID ieee
SourceType Publisher
StartPage 12
SubjectTerms autonomous driving
Collision avoidance
Data science
development process
Histograms
Image recognition
optimization of artificial potential field method
path-planning algorithm
Roads
Robustness
Visualization
Title Development of Obstacle Avoidance for Autonomous Vehicles and an Optimization Scheme for the Artificial Potential Field Method
URI https://ieeexplore.ieee.org/document/9463291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywMjoY7z4XisChULbaUC6lY59ll0aIJC2pHfztmJSgcWBkuWJcuSn-W7s9-7I-ROJ0ZIpUXATIIBSpyngbQ8DgRnSqLFUTFvik2IySRbLOSsQ-53WhgA8OQzeHBd_5dvSr1xT2UDGacRd1L1AyFEo9VqEwmFTA5Gj_OEM-HUVTx0eQmdKnavZIq3GOPj_611Qvq_0js62xmVU9KBoke-96g9tLR0mqNPh3jT4bZcGYcbRd-TDje1kyhgLE_f4cPz3agqDDY6xZth3Uou6RyBWjdT0P2jw8rzhfAg0llZO_YQ9saO2UZffH3pPnkbP72OnoO2cEKwwnihxpjQJpArQOPEtGVGQxYqmzHgJmV4oUjFU44QySSTwJlhBtBrDBOdMxUpqaMz0i3KAs4JzcCmsVGx0YigiGxupTWZtak0Kc9VeEF6bu-Wn01ujGW7bZd_D1-RIwdO84RxTbp1tYEbcqi39eqruvWA_gBF76Yc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jCnpS2UTnVw4erUvTzxzHdEzcF2zKbiNNXnCHtTK7Hf3bfWnL3MGLh0AItIX8wvtIf7_3CLlXgY6EVJHDdIAJip-EjjDcdyLOpECPI31eNpuIRqN4PheTGnnYaWEAoCCfwaOdFv_ydaY29qqsLfzQ41aqfhD4-I5SrVWVEnKZaHefpgFnkdVXcddWJrS62L2mKYXP6J3872unpPkrvqOTnVs5IzVIG-R7j9xDM0PHCUZ1iDjtbLOltshRjD5pZ5NbkQJm8_QdPgrGG5WpxkHHaBtWleiSThGqVfkIBoC0sy4YQ3gU6STLLX8IZz3LbaPDosN0k7z1nmfdvlO1TnCWmDHkmBWaABIJ6J6YMkwriF1pYgZchwxNipA85AiSCGIBnGmmAeNGN1AJk54Uyjsn9TRL4YLQGEzoa-lrhRhGnkmMMDo2JhQ65Il0L0nD7t3is6yOsai2rfX38h056s-Gg8XgZfR6RY4tUOWFxjWp5-sN3JBDtc2XX-vbAtwfEhOpYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+2nd+International+Conference+on+Computing+and+Data+Science+%28CDS%29&rft.atitle=Development+of+Obstacle+Avoidance+for+Autonomous+Vehicles+and+an+Optimization+Scheme+for+the+Artificial+Potential+Field+Method&rft.au=Yang%2C+Xuefei&rft.date=2021-01-01&rft.pub=IEEE&rft.spage=12&rft.epage=18&rft_id=info:doi/10.1109%2FCDS52072.2021.00010&rft.externalDocID=9463291