Reachability in Vector Addition Systems is Ackermann-complete

Vector Addition Systems and equivalent Petri nets are a well established models of concurrency. The central algorithmic problem for Vector Addition Systems with a long research history is the reachability problem asking whether there exists a run from one given configuration to another. We settle it...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / annual Symposium on Foundations of Computer Science s. 1229 - 1240
Hlavní autori: Czerwinski, Wojciech, Orlikowski, Lukasz
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.02.2022
Predmet:
ISSN:2575-8454
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Vector Addition Systems and equivalent Petri nets are a well established models of concurrency. The central algorithmic problem for Vector Addition Systems with a long research history is the reachability problem asking whether there exists a run from one given configuration to another. We settle its complexity to be Ackermann-complete thus closing the problem open for 45 years. In particular we prove that the problem is \mathcal{F}_{k} -hard for Vector Addition Systems with States in dimension 6k, where \mathcal{F}_{k} is the k -th complexity class from the hierarchy of fast-growing complexity classes.
ISSN:2575-8454
DOI:10.1109/FOCS52979.2021.00120