CNN Based Autoencoder Application in Breast Cancer Image Retrieval
Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query image with the features contained in the image located in the database. Currently, the study related to CBMIR on breast cancer image however...
Gespeichert in:
| Veröffentlicht in: | 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA) S. 29 - 34 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
21.07.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query image with the features contained in the image located in the database. Currently, the study related to CBMIR on breast cancer image however remains challenging due to inadequate research in such area. Previous study has a low performance and misinformation emphasizing the feature extraction process. Therefore, this study aims to utilize the CNN based Autoencoder method to minimize misinformation in the feature extraction process and to improve the performance result. The dataset used in this study is the BreakHis dataset. Overall, the results of image retrieval in breast cancer applying the CNN based Autoencoder method achieved higher performance compared to the method used in the previous study with an average precision of 0.9237 in the mainclass dataset category and 0.6825 in the subclass dataset category. |
|---|---|
| AbstractList | Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query image with the features contained in the image located in the database. Currently, the study related to CBMIR on breast cancer image however remains challenging due to inadequate research in such area. Previous study has a low performance and misinformation emphasizing the feature extraction process. Therefore, this study aims to utilize the CNN based Autoencoder method to minimize misinformation in the feature extraction process and to improve the performance result. The dataset used in this study is the BreakHis dataset. Overall, the results of image retrieval in breast cancer applying the CNN based Autoencoder method achieved higher performance compared to the method used in the previous study with an average precision of 0.9237 in the mainclass dataset category and 0.6825 in the subclass dataset category. |
| Author | Ghufron, Kharisma Muzaki Sabrila, Trifebi Shina Husniah, Lailatul Minarno, Agus Eko Sumadi, Fauzi Dwi Setiawan |
| Author_xml | – sequence: 1 givenname: Agus Eko surname: Minarno fullname: Minarno, Agus Eko email: aguseko@umm.ac.id organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia – sequence: 2 givenname: Kharisma Muzaki surname: Ghufron fullname: Ghufron, Kharisma Muzaki email: kharisma.muzaki@gmail.com organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia – sequence: 3 givenname: Trifebi Shina surname: Sabrila fullname: Sabrila, Trifebi Shina email: trifebiss@gmail.com organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia – sequence: 4 givenname: Lailatul surname: Husniah fullname: Husniah, Lailatul email: husniah@umm.ac.id organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia – sequence: 5 givenname: Fauzi Dwi Setiawan surname: Sumadi fullname: Sumadi, Fauzi Dwi Setiawan email: fauzisumadi@umm.ac.id organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia |
| BookMark | eNotj8tKw0AUQEfQhdZ-gZv5gcR5P5ZJ8BEoLWhdl5uZOzKQJiGJgn-vYFdnceDAuSPXwzggIZSzknPmH9v39thWWjhuS8EEL71mQjB9RbbeOm6MVsIpa29J3ez3tIYFI62-1hGHMEacaTVNfQ6w5nGgeaD1jLCstIEh_Mn2DJ9I33CdM35Df09uEvQLbi_ckI_np2PzWuwOL21T7YrMuVsLiUGiFjE5k5KMDmKEqLlmJkZmglPKG6UkyJS66JLrOrQoLHiuYvAR5IY8_HczIp6mOZ9h_jldzuQv25FJUg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISITIA52817.2021.9502205 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès Toulouse INP et ENVT - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665428477 1665428473 |
| EndPage | 34 |
| ExternalDocumentID | 9502205 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-3ec3e52df86ff3d8addad51506dd06c84496443a3ffbd8f8bbe7e27a914dc9da3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:01 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-3ec3e52df86ff3d8addad51506dd06c84496443a3ffbd8f8bbe7e27a914dc9da3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9502205 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-July-21 |
| PublicationDateYYYYMMDD | 2021-07-21 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA) |
| PublicationTitleAbbrev | ISITIA |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.850608 |
| Snippet | Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 29 |
| SubjectTerms | Autoencoder Biomedical imaging Breast cancer CNN Feature extraction Image retrieval Seminars |
| Title | CNN Based Autoencoder Application in Breast Cancer Image Retrieval |
| URI | https://ieeexplore.ieee.org/document/9502205 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRbXc3ySY5tsXigixFq_RWNskEenAr262_3yStLYIXbyEEwmSGmcm8PoTuZcmSzHnykRMeFVFd2khpwSJqYyZSlWga4Hzen3lRiPlcTlvoYd8LAwCh-Az6fhly-WalNz5UNpAs9IW2UZtzvu3V-inOieUgf81n-ZClIuHu35cm_d3xX7gpwWxMTv534SnqHfrv8HRvWc5QC6ouGo2LAo-c0TF4uGlWfgClgRoPDxlovKzwyBeZN3jsmVnj_MOpC_wSULOcSPXQ2-RxNn6KdggI0dI5_k1EQBNgqbEis5YY4ZRRaZgfCmhMnGlBqXT-DCmJtcoIK5QCDikvZUKNlqYk56hTrSq4QLhUhFEgGhgQymKljNYClMi0IoJRfYm6nv7F53bIxWJH-tXf29fo2D-xD3KmyQ3qNPUGbtGR_mqW6_oucOYbjOmRew |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFPRJZRO_zYOPdrZN0qaP23CsOMvQKXsbTXKBPdhJ7fz7Tbq5IfjiWwiEcLnj7nJfP4DbJOdBZD15zwqP9JjKjSeV4B4zPhehDBSr4XzeRnGWiek0GTfgbtMLg4h18Rl23LLO5euFWrpQ2X3C677QHdjljIXBqlvrpzzHT-7Tl3SSdnkogtj-_MKgsz7wCzmlNhyDw_9deQTtbQceGW9syzE0sGhBr59lpGfNjibdZbVwIyg1lqS7zUGTeUF6rsy8In3HzpKk71ZhkOcaN8sKVRteBw-T_tBbYyB4c-v6Vx5FRZGH2ojIGKqFVUe55m4soNZ-pARjifVoaE6NkVoYISXGGMZ5EjCtEp3TE2gWiwJPgeSScoZUIUfKuC-lVkqgFJGSVHCmzqDl6J99rMZczNakn_-9fQP7w8nTaDZKs8cLOHDP7UKeYXAJzapc4hXsqa9q_lle11z6Bk1XlMI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Seminar+on+Intelligent+Technology+and+Its+Applications+%28ISITIA%29&rft.atitle=CNN+Based+Autoencoder+Application+in+Breast+Cancer+Image+Retrieval&rft.au=Minarno%2C+Agus+Eko&rft.au=Ghufron%2C+Kharisma+Muzaki&rft.au=Sabrila%2C+Trifebi+Shina&rft.au=Husniah%2C+Lailatul&rft.date=2021-07-21&rft.pub=IEEE&rft.spage=29&rft.epage=34&rft_id=info:doi/10.1109%2FISITIA52817.2021.9502205&rft.externalDocID=9502205 |