CNN Based Autoencoder Application in Breast Cancer Image Retrieval

Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query image with the features contained in the image located in the database. Currently, the study related to CBMIR on breast cancer image however...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 International Seminar on Intelligent Technology and Its Applications (ISITIA) S. 29 - 34
Hauptverfasser: Minarno, Agus Eko, Ghufron, Kharisma Muzaki, Sabrila, Trifebi Shina, Husniah, Lailatul, Sumadi, Fauzi Dwi Setiawan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 21.07.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query image with the features contained in the image located in the database. Currently, the study related to CBMIR on breast cancer image however remains challenging due to inadequate research in such area. Previous study has a low performance and misinformation emphasizing the feature extraction process. Therefore, this study aims to utilize the CNN based Autoencoder method to minimize misinformation in the feature extraction process and to improve the performance result. The dataset used in this study is the BreakHis dataset. Overall, the results of image retrieval in breast cancer applying the CNN based Autoencoder method achieved higher performance compared to the method used in the previous study with an average precision of 0.9237 in the mainclass dataset category and 0.6825 in the subclass dataset category.
AbstractList Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query image with the features contained in the image located in the database. Currently, the study related to CBMIR on breast cancer image however remains challenging due to inadequate research in such area. Previous study has a low performance and misinformation emphasizing the feature extraction process. Therefore, this study aims to utilize the CNN based Autoencoder method to minimize misinformation in the feature extraction process and to improve the performance result. The dataset used in this study is the BreakHis dataset. Overall, the results of image retrieval in breast cancer applying the CNN based Autoencoder method achieved higher performance compared to the method used in the previous study with an average precision of 0.9237 in the mainclass dataset category and 0.6825 in the subclass dataset category.
Author Ghufron, Kharisma Muzaki
Sabrila, Trifebi Shina
Husniah, Lailatul
Minarno, Agus Eko
Sumadi, Fauzi Dwi Setiawan
Author_xml – sequence: 1
  givenname: Agus Eko
  surname: Minarno
  fullname: Minarno, Agus Eko
  email: aguseko@umm.ac.id
  organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia
– sequence: 2
  givenname: Kharisma Muzaki
  surname: Ghufron
  fullname: Ghufron, Kharisma Muzaki
  email: kharisma.muzaki@gmail.com
  organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia
– sequence: 3
  givenname: Trifebi Shina
  surname: Sabrila
  fullname: Sabrila, Trifebi Shina
  email: trifebiss@gmail.com
  organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia
– sequence: 4
  givenname: Lailatul
  surname: Husniah
  fullname: Husniah, Lailatul
  email: husniah@umm.ac.id
  organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia
– sequence: 5
  givenname: Fauzi Dwi Setiawan
  surname: Sumadi
  fullname: Sumadi, Fauzi Dwi Setiawan
  email: fauzisumadi@umm.ac.id
  organization: Universitas Muhammadiyah Malang,Informatics Department,Malang,Indonesia
BookMark eNotj8tKw0AUQEfQhdZ-gZv5gcR5P5ZJ8BEoLWhdl5uZOzKQJiGJgn-vYFdnceDAuSPXwzggIZSzknPmH9v39thWWjhuS8EEL71mQjB9RbbeOm6MVsIpa29J3ez3tIYFI62-1hGHMEacaTVNfQ6w5nGgeaD1jLCstIEh_Mn2DJ9I33CdM35Df09uEvQLbi_ckI_np2PzWuwOL21T7YrMuVsLiUGiFjE5k5KMDmKEqLlmJkZmglPKG6UkyJS66JLrOrQoLHiuYvAR5IY8_HczIp6mOZ9h_jldzuQv25FJUg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISITIA52817.2021.9502205
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès Toulouse INP et ENVT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665428477
1665428473
EndPage 34
ExternalDocumentID 9502205
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-3ec3e52df86ff3d8addad51506dd06c84496443a3ffbd8f8bbe7e27a914dc9da3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:01 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-3ec3e52df86ff3d8addad51506dd06c84496443a3ffbd8f8bbe7e27a914dc9da3
PageCount 6
ParticipantIDs ieee_primary_9502205
PublicationCentury 2000
PublicationDate 2021-July-21
PublicationDateYYYYMMDD 2021-07-21
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July-21
  day: 21
PublicationDecade 2020
PublicationTitle 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)
PublicationTitleAbbrev ISITIA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.850608
Snippet Content Based Medical Image Retrieval (CBMIR) is considered as a common technique to retrieve relevant images by comparing the features contained in the query...
SourceID ieee
SourceType Publisher
StartPage 29
SubjectTerms Autoencoder
Biomedical imaging
Breast cancer
CNN
Feature extraction
Image retrieval
Seminars
Title CNN Based Autoencoder Application in Breast Cancer Image Retrieval
URI https://ieeexplore.ieee.org/document/9502205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRbXc3ySY5tsXigixFq_RWNskEenAr262_3yStLYIXbyEEwmSGmcm8PoTuZcmSzHnykRMeFVFd2khpwSJqYyZSlWga4Hzen3lRiPlcTlvoYd8LAwCh-Az6fhly-WalNz5UNpAs9IW2UZtzvu3V-inOieUgf81n-ZClIuHu35cm_d3xX7gpwWxMTv534SnqHfrv8HRvWc5QC6ouGo2LAo-c0TF4uGlWfgClgRoPDxlovKzwyBeZN3jsmVnj_MOpC_wSULOcSPXQ2-RxNn6KdggI0dI5_k1EQBNgqbEis5YY4ZRRaZgfCmhMnGlBqXT-DCmJtcoIK5QCDikvZUKNlqYk56hTrSq4QLhUhFEgGhgQymKljNYClMi0IoJRfYm6nv7F53bIxWJH-tXf29fo2D-xD3KmyQ3qNPUGbtGR_mqW6_oucOYbjOmRew
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFPRJZRO_zYOPdrZN0qaP23CsOMvQKXsbTXKBPdhJ7fz7Tbq5IfjiWwiEcLnj7nJfP4DbJOdBZD15zwqP9JjKjSeV4B4zPhehDBSr4XzeRnGWiek0GTfgbtMLg4h18Rl23LLO5euFWrpQ2X3C677QHdjljIXBqlvrpzzHT-7Tl3SSdnkogtj-_MKgsz7wCzmlNhyDw_9deQTtbQceGW9syzE0sGhBr59lpGfNjibdZbVwIyg1lqS7zUGTeUF6rsy8In3HzpKk71ZhkOcaN8sKVRteBw-T_tBbYyB4c-v6Vx5FRZGH2ojIGKqFVUe55m4soNZ-pARjifVoaE6NkVoYISXGGMZ5EjCtEp3TE2gWiwJPgeSScoZUIUfKuC-lVkqgFJGSVHCmzqDl6J99rMZczNakn_-9fQP7w8nTaDZKs8cLOHDP7UKeYXAJzapc4hXsqa9q_lle11z6Bk1XlMI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Seminar+on+Intelligent+Technology+and+Its+Applications+%28ISITIA%29&rft.atitle=CNN+Based+Autoencoder+Application+in+Breast+Cancer+Image+Retrieval&rft.au=Minarno%2C+Agus+Eko&rft.au=Ghufron%2C+Kharisma+Muzaki&rft.au=Sabrila%2C+Trifebi+Shina&rft.au=Husniah%2C+Lailatul&rft.date=2021-07-21&rft.pub=IEEE&rft.spage=29&rft.epage=34&rft_id=info:doi/10.1109%2FISITIA52817.2021.9502205&rft.externalDocID=9502205