SCG Backpropagation Based Prediction of Stressed EEG Spectrum
In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms and feed forward neural network is employed to detect the stressed patterns. Four continuous hours of sleep EEG recordings of subjects under th...
Gespeichert in:
| Veröffentlicht in: | 2020 Advances in Science and Engineering Technology International Conferences (ASET) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.02.2020
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms and feed forward neural network is employed to detect the stressed patterns. Four continuous hours of sleep EEG recordings of subjects under the exposure of high temperature and also at room temperature have been filtered and visually analyzed. Three sleep stages: AWAKE, SWS (Slow Wave Sleep) and REM (Rapid Eye Movement) along with EMG and EOG activities under heat stress and without heat stress were quantified in time-frequency domain. Features extracted in terms of wavelet coefficients are further classified using scaled conjugate gradient algorithm (SCG). Classification accuracy of SCG algorithm is found to be 97.12% and 95.3% for stress and control subjects respectively, which may be considered as an efficient prediction model. |
|---|---|
| AbstractList | In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms and feed forward neural network is employed to detect the stressed patterns. Four continuous hours of sleep EEG recordings of subjects under the exposure of high temperature and also at room temperature have been filtered and visually analyzed. Three sleep stages: AWAKE, SWS (Slow Wave Sleep) and REM (Rapid Eye Movement) along with EMG and EOG activities under heat stress and without heat stress were quantified in time-frequency domain. Features extracted in terms of wavelet coefficients are further classified using scaled conjugate gradient algorithm (SCG). Classification accuracy of SCG algorithm is found to be 97.12% and 95.3% for stress and control subjects respectively, which may be considered as an efficient prediction model. |
| Author | Upadhyay, Prabhat Kumar Nagpal, Chetna |
| Author_xml | – sequence: 1 givenname: Prabhat Kumar surname: Upadhyay fullname: Upadhyay, Prabhat Kumar organization: Birla Institute of Technology, Mesra,Department of Electrical and Electronics Engineering,Ranchi,India – sequence: 2 givenname: Chetna surname: Nagpal fullname: Nagpal, Chetna organization: Birla Institute of Technology, Offshore Campus,Dept. of Electrical and Electronics Engineering,UAE |
| BookMark | eNotj0FLw0AUhLegB9v6CwTJH0jcfbvJbg4eaoixUGgh9Vxedl_Kok3CJh7890btYRjmO8wwS3bT9R0x9ih4IgTPnzZ1eVRG5pAAB57kQhgJasGWQoMRKlMc7thzXVTRC9qPIfQDnnHyfTfnkVx0COS8_QN9G9VToPEXl2UV1QPZKXxd1uy2xc-R7q--Yu-v5bF4i3f7altsdrGfR6dYIneCpOa8UTBLu9Rop1rIZSqzpkkNYavBOYupAWUcZYIUGquMJWdBrtjDf68notMQ_AXD9-n6SP4AvBNFSA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ASET48392.2020.9118324 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728146402 9781728146409 |
| EndPage | 5 |
| ExternalDocumentID | 9118324 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-3a0d1e3700b420b47d587d4f293536bb58eaf72ddca58248de61e4a8c48cedc23 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:48 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-3a0d1e3700b420b47d587d4f293536bb58eaf72ddca58248de61e4a8c48cedc23 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9118324 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Feb. |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-Feb. |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 Advances in Science and Engineering Technology International Conferences (ASET) |
| PublicationTitleAbbrev | ICASET |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7398365 |
| Snippet | In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Backpropagation EEG Electroencephalography EMG EOG Feature extraction Heating systems Prediction algorithms Scaled Conjugate Gradient Algorithm (SCG) Signal processing algorithms Sleep Stress Classification |
| Title | SCG Backpropagation Based Prediction of Stressed EEG Spectrum |
| URI | https://ieeexplore.ieee.org/document/9118324 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UeuipLVr6Zg89dnU3m2zioYdWVnsSQQveJI9ZkFItuvr7O4mLpdBLD4HNMBBmdjNDdubLB_CoBIoUaad5KouYop-LjSnzmKWYcY5lzrQNZBNyPFbzeX_SgKcjFgYRQ_MZdv1jqOW7td35X2U92pj0AfImNKXMD1itGvSbJv3ey7SYcZ_v6dTHkm6t_Is1JSSN4dn_ljuHzg_6Lpoc88oFNHDVhufpYBS9avtBEY9iQPAnzbfoSNcXW4JgXUbTAP4gcVGMIs8uX212nx14HxazwVtcUx_ES1q0ijOdOPKWTBLDGQ3phJKOl5ScRZYbIxTqUjLnrBaKceUwT5FrZbmy6CzLLqG1Wq_wCiLlbMJQ-P4XzU3KjHZ0hGCO1JnNVH4NbW_64utwu8Witvrmb_EtnHrvHvqW76BFNuA9nNh9tdxuHsIr-QbOFo2d |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfSk0opvc_Bo2mSzm2wPHlTSVqyl0Aq9lX1MoIit9OHvd3YbKoIXDwvZYWCZSXaGzcy3H8CtFChipJ3mqCxCin421LpIQxZjwjkWKVPGk01k_b4cj1uDCtxtsTCI6JvPsOEefS3fzs3a_Spr0sakD5DvwK5jzhIbtFYJ-42jVvNhmI-4y_h07mNRo1T_xZvi00b78H8LHkH9B38XDLaZ5RgqOKvB_fCpEzwq804xj6KA9yjNl2hJ15VbvGBeBEMP_yBxnncCxy-_Wqw_6vDWzkdP3bAkPwintOgqTFRkyV9ZFGnOaGRWyMzygtKzSFKthURVZMxao4RkXFpMY-RKGi4NWsOSE6jO5jM8hUBaEzEUrgNGcR0zrSwdIpgldWYSmZ5BzZk--dzcbzEprT7_W3wD-93Ra2_Se-6_XMCB8_Smi_kSqmQPXsGe-VpNl4tr_3q-AWUIkOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+Advances+in+Science+and+Engineering+Technology+International+Conferences+%28ASET%29&rft.atitle=SCG+Backpropagation+Based+Prediction+of+Stressed+EEG+Spectrum&rft.au=Upadhyay%2C+Prabhat+Kumar&rft.au=Nagpal%2C+Chetna&rft.date=2020-02-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FASET48392.2020.9118324&rft.externalDocID=9118324 |