SCG Backpropagation Based Prediction of Stressed EEG Spectrum

In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms and feed forward neural network is employed to detect the stressed patterns. Four continuous hours of sleep EEG recordings of subjects under th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 Advances in Science and Engineering Technology International Conferences (ASET) S. 1 - 5
Hauptverfasser: Upadhyay, Prabhat Kumar, Nagpal, Chetna
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.02.2020
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms and feed forward neural network is employed to detect the stressed patterns. Four continuous hours of sleep EEG recordings of subjects under the exposure of high temperature and also at room temperature have been filtered and visually analyzed. Three sleep stages: AWAKE, SWS (Slow Wave Sleep) and REM (Rapid Eye Movement) along with EMG and EOG activities under heat stress and without heat stress were quantified in time-frequency domain. Features extracted in terms of wavelet coefficients are further classified using scaled conjugate gradient algorithm (SCG). Classification accuracy of SCG algorithm is found to be 97.12% and 95.3% for stress and control subjects respectively, which may be considered as an efficient prediction model.
AbstractList In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms and feed forward neural network is employed to detect the stressed patterns. Four continuous hours of sleep EEG recordings of subjects under the exposure of high temperature and also at room temperature have been filtered and visually analyzed. Three sleep stages: AWAKE, SWS (Slow Wave Sleep) and REM (Rapid Eye Movement) along with EMG and EOG activities under heat stress and without heat stress were quantified in time-frequency domain. Features extracted in terms of wavelet coefficients are further classified using scaled conjugate gradient algorithm (SCG). Classification accuracy of SCG algorithm is found to be 97.12% and 95.3% for stress and control subjects respectively, which may be considered as an efficient prediction model.
Author Upadhyay, Prabhat Kumar
Nagpal, Chetna
Author_xml – sequence: 1
  givenname: Prabhat Kumar
  surname: Upadhyay
  fullname: Upadhyay, Prabhat Kumar
  organization: Birla Institute of Technology, Mesra,Department of Electrical and Electronics Engineering,Ranchi,India
– sequence: 2
  givenname: Chetna
  surname: Nagpal
  fullname: Nagpal, Chetna
  organization: Birla Institute of Technology, Offshore Campus,Dept. of Electrical and Electronics Engineering,UAE
BookMark eNotj0FLw0AUhLegB9v6CwTJH0jcfbvJbg4eaoixUGgh9Vxedl_Kok3CJh7890btYRjmO8wwS3bT9R0x9ih4IgTPnzZ1eVRG5pAAB57kQhgJasGWQoMRKlMc7thzXVTRC9qPIfQDnnHyfTfnkVx0COS8_QN9G9VToPEXl2UV1QPZKXxd1uy2xc-R7q--Yu-v5bF4i3f7altsdrGfR6dYIneCpOa8UTBLu9Rop1rIZSqzpkkNYavBOYupAWUcZYIUGquMJWdBrtjDf68notMQ_AXD9-n6SP4AvBNFSA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASET48392.2020.9118324
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728146402
9781728146409
EndPage 5
ExternalDocumentID 9118324
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-3a0d1e3700b420b47d587d4f293536bb58eaf72ddca58248de61e4a8c48cedc23
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-3a0d1e3700b420b47d587d4f293536bb58eaf72ddca58248de61e4a8c48cedc23
PageCount 5
ParticipantIDs ieee_primary_9118324
PublicationCentury 2000
PublicationDate 2020-Feb.
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-Feb.
PublicationDecade 2020
PublicationTitle 2020 Advances in Science and Engineering Technology International Conferences (ASET)
PublicationTitleAbbrev ICASET
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7398365
Snippet In this paper, feature vectors pertaining to the changes in spectral transients of sleep EEG under hot environment has been studied using wavelet transforms...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Backpropagation
EEG
Electroencephalography
EMG
EOG
Feature extraction
Heating systems
Prediction algorithms
Scaled Conjugate Gradient Algorithm (SCG)
Signal processing algorithms
Sleep
Stress Classification
Title SCG Backpropagation Based Prediction of Stressed EEG Spectrum
URI https://ieeexplore.ieee.org/document/9118324
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UeuipLVr6Zg89dnU3m2zioYdWVnsSQQveJI9ZkFItuvr7O4mLpdBLD4HNMBBmdjNDdubLB_CoBIoUaad5KouYop-LjSnzmKWYcY5lzrQNZBNyPFbzeX_SgKcjFgYRQ_MZdv1jqOW7td35X2U92pj0AfImNKXMD1itGvSbJv3ey7SYcZ_v6dTHkm6t_Is1JSSN4dn_ljuHzg_6Lpoc88oFNHDVhufpYBS9avtBEY9iQPAnzbfoSNcXW4JgXUbTAP4gcVGMIs8uX212nx14HxazwVtcUx_ES1q0ijOdOPKWTBLDGQ3phJKOl5ScRZYbIxTqUjLnrBaKceUwT5FrZbmy6CzLLqG1Wq_wCiLlbMJQ-P4XzU3KjHZ0hGCO1JnNVH4NbW_64utwu8Witvrmb_EtnHrvHvqW76BFNuA9nNh9tdxuHsIr-QbOFo2d
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfSk0opvc_Bo2mSzm2wPHlTSVqyl0Aq9lX1MoIit9OHvd3YbKoIXDwvZYWCZSXaGzcy3H8CtFChipJ3mqCxCin421LpIQxZjwjkWKVPGk01k_b4cj1uDCtxtsTCI6JvPsOEefS3fzs3a_Spr0sakD5DvwK5jzhIbtFYJ-42jVvNhmI-4y_h07mNRo1T_xZvi00b78H8LHkH9B38XDLaZ5RgqOKvB_fCpEzwq804xj6KA9yjNl2hJ15VbvGBeBEMP_yBxnncCxy-_Wqw_6vDWzkdP3bAkPwintOgqTFRkyV9ZFGnOaGRWyMzygtKzSFKthURVZMxao4RkXFpMY-RKGi4NWsOSE6jO5jM8hUBaEzEUrgNGcR0zrSwdIpgldWYSmZ5BzZk--dzcbzEprT7_W3wD-93Ra2_Se-6_XMCB8_Smi_kSqmQPXsGe-VpNl4tr_3q-AWUIkOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+Advances+in+Science+and+Engineering+Technology+International+Conferences+%28ASET%29&rft.atitle=SCG+Backpropagation+Based+Prediction+of+Stressed+EEG+Spectrum&rft.au=Upadhyay%2C+Prabhat+Kumar&rft.au=Nagpal%2C+Chetna&rft.date=2020-02-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FASET48392.2020.9118324&rft.externalDocID=9118324