Using a high-level parallel programming language for GPU-accelerated tomographic reconstruction

This paper aims to determine the usefulness of using a high-level parallel programming language for implementing parallel high-performance tomographic reconstruction algorithms. The purpose of this is to make it easier for researchers to implement advanced model-based iterative reconstruction algori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 International Conference on High Performance Computing & Simulation (HPCS) s. 27 - 32
Hlavní autoři: Lindhoj, Mette Bjerg, Henriksen, Troels, Pedersen, Larke, Sporring, Jon
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper aims to determine the usefulness of using a high-level parallel programming language for implementing parallel high-performance tomographic reconstruction algorithms. The purpose of this is to make it easier for researchers to implement advanced model-based iterative reconstruction algorithms for use at synchrotron facilities, while still taking advantage of hardware such as GPUs. To this end, we implement the forward- and back-projection in the programming language Futhark, and verify their applicability through an implementation of an algebraic reconstruction algorithm. We obtain promising performance results by use of algorithmic considerations instead of low-level optimizations. Finally, we demonstrate that the implementation makes it possible to prototype implementations of iterative reconstruction algorithms on a standard laptop while still obtaining good scaling towards highend GPUs.
DOI:10.1109/HPCS48598.2019.9188217