Towards a General Prediction System for the Primary Delay in Urban Railways

Nowadays a large amount of data is collected from sensor devices across the cyber-physical networks. Accurate and reliable primary delay predictions are essential for rail operations management and planning. However, very few existing `big data' methods meet the specific needs in railways. We p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2019 IEEE Intelligent Transportation Systems Conference (ITSC) s. 3482 - 3487
Hlavní autori: Wu, Jianqing, Zhou, Luping, Cai, Chen, Dong, Fang, Shen, Jun, Sun, Geng
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2019
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays a large amount of data is collected from sensor devices across the cyber-physical networks. Accurate and reliable primary delay predictions are essential for rail operations management and planning. However, very few existing `big data' methods meet the specific needs in railways. We propose a comprehensive and general data-driven Primary Delay Prediction System (PDPS) framework, which combines General Transit Feed Specification (GTFS), Critical Point Search (CPS), and deep learning models to leverage the data fusion. Based on this framework, we have also developed an open source data collection and processing tool that reduces the barrier to the use of the different open data sources. Finally, we demonstrate an advanced deep learning model, the novel ConvLSTM Encoder-Decoder model with CPS for better primary delay predictions.
AbstractList Nowadays a large amount of data is collected from sensor devices across the cyber-physical networks. Accurate and reliable primary delay predictions are essential for rail operations management and planning. However, very few existing `big data' methods meet the specific needs in railways. We propose a comprehensive and general data-driven Primary Delay Prediction System (PDPS) framework, which combines General Transit Feed Specification (GTFS), Critical Point Search (CPS), and deep learning models to leverage the data fusion. Based on this framework, we have also developed an open source data collection and processing tool that reduces the barrier to the use of the different open data sources. Finally, we demonstrate an advanced deep learning model, the novel ConvLSTM Encoder-Decoder model with CPS for better primary delay predictions.
Author Shen, Jun
Cai, Chen
Dong, Fang
Sun, Geng
Wu, Jianqing
Zhou, Luping
Author_xml – sequence: 1
  givenname: Jianqing
  surname: Wu
  fullname: Wu, Jianqing
  organization: University of Wollongong,School of Computing and Information Technology,Wollongong,Australia
– sequence: 2
  givenname: Luping
  surname: Zhou
  fullname: Zhou, Luping
  organization: University of Wollongong,School of Computing and Information Technology,Wollongong,Australia
– sequence: 3
  givenname: Chen
  surname: Cai
  fullname: Cai, Chen
  organization: Data 61, CSIRO,Advanced Data Analytics in Transport,Sydney,Australia
– sequence: 4
  givenname: Fang
  surname: Dong
  fullname: Dong, Fang
  organization: Southeast University,School of Computer Science and Engineering,Nanjing,China
– sequence: 5
  givenname: Jun
  surname: Shen
  fullname: Shen, Jun
  organization: University of Wollongong,School of Computing and Information Technology,Wollongong,Australia
– sequence: 6
  givenname: Geng
  surname: Sun
  fullname: Sun, Geng
  organization: University of Wollongong,School of Computing and Information Technology,Wollongong,Australia
BookMark eNotj1FLwzAUhSPog879APElf6A1N03T5FGqbsOB4rrncZvcYqBLJS2M_nsH23k5Dx8cvvPAbuMQibEnEDmAsC-bZlfnUoDNjQVttLlhS1sZKAujKyGVuWefzXDC5EeOfEWREvb8O5EPbgpD5Lt5nOjIuyHx6ZfOJBwxzfyNepx5iHyfWoz8B0N_wnl8ZHcd9iMtr71g-4_3pl5n26_Vpn7dZgHATJkk2bqyVFZXJXRWVlIrcY62XksEIVznpVcWLShlHYrC-UJ0rtKqdUBQLNjzZTcQ0eHvInW4Xiz-AQrZSWI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC.2019.8916868
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538670248
1538670240
EndPage 3487
ExternalDocumentID 8916868
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i118t-2e2bc55496751f927264000069d62a100cfd2d49a91449ca03cd30fc764bc1e13
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:26 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-2e2bc55496751f927264000069d62a100cfd2d49a91449ca03cd30fc764bc1e13
PageCount 6
ParticipantIDs ieee_primary_8916868
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle 2019 IEEE Intelligent Transportation Systems Conference (ITSC)
PublicationTitleAbbrev ITSC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7943738
Snippet Nowadays a large amount of data is collected from sensor devices across the cyber-physical networks. Accurate and reliable primary delay predictions are...
SourceID ieee
SourceType Publisher
StartPage 3482
SubjectTerms Delays
GTFS
Long Short-Term Memory
Machine learning
Prediction
Prediction algorithms
Predictive models
Primary Delay
Rail transportation
Railways
Schedules
Title Towards a General Prediction System for the Primary Delay in Urban Railways
URI https://ieeexplore.ieee.org/document/8916868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-ycGjsUk2TTbnalGEUrSF3ko2D1goW-lD6b83yS6K4MVbSAYSZg7fN5kXwG3AoAEXhOOBZxnmWjocJDPsmTZZLi312qZhE3I8zudzNWnB3XctjHMuJZ-5-7hMsXy7Mrv4VdbPA5fJRd6GtpSirtVqApWUqP7z9G0Yc7WC8Wu5XwNTEl6Mjv530zH0fgrv0OQbUk6g5aouvExTausGadQ0iQ4yMb4SdYrqluMocE8UuFw4Sd0j0INb6j0qKzRbF7pCr7pcfur9pgez0eN0-ISbGQi4DNR_i5ljhQmQrwKxp14xGQhMwhhlBdOUEOMts1xpFTwjZTTJjM2IN1LwwlBHs1PoVKvKnQGKrdqDw6G48px74rSQwhjHrZWsUIKeQzcqYvFeP3TR6ODi7-1LOIy6rvParqCzXe_cNRyYj225Wd8k23wBLCaRVA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_BobDab7m7O1dLSWopuobeSzQMWyrb0ofTfm2SXiuDFW0gGEmYO3zeZF8CjxaA2iwjDbUNDzESssZUMsaFChkmsAiOUHzYRj0bJdMrHNXja18JorX3ymX52Sx_LVwu5dV9lrcRymSRKDuCwzRglZbVWFaoMCG_104-Oy9ay5i8lf41M8YjRPf3fXWfQ_Cm9Q-M9qJxDTRcNGKQ-uXWNBKraRFsZF2FxWkVl03Fk2SeybM6e-P4R6EXPxQ7lBZqsMlGgd5HPv8Ru3YRJ9zXt9HA1BQHnlvxvMNU0kxb0uaX2geE0thTGowxXERUBIdIoqhgX3PpGXAoSShUSI-OIZTLQQXgB9WJR6EtArlm7dTk444YxQ7SI4khKzZSKacaj4AoaThGzZfnQWaWD67-3H-C4l74NZ8P-aHADJ07vZZbbLdQ3q62-gyP5ucnXq3tvp2_s05Sb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Intelligent+Transportation+Systems+Conference+%28ITSC%29&rft.atitle=Towards+a+General+Prediction+System+for+the+Primary+Delay+in+Urban+Railways&rft.au=Wu%2C+Jianqing&rft.au=Zhou%2C+Luping&rft.au=Cai%2C+Chen&rft.au=Dong%2C+Fang&rft.date=2019-10-01&rft.pub=IEEE&rft.spage=3482&rft.epage=3487&rft_id=info:doi/10.1109%2FITSC.2019.8916868&rft.externalDocID=8916868