Deep High-order Tensor Convolutional Sparse Coding for Stereo Matching
With the rapid development of science and technology, high-dimensional data emerge one after another. High-order tensors can be used to describe high-dimensional data structure, which can retain the hidden structure of data, but cannot obtain the deep features. Therefore, it is very important to est...
Saved in:
| Published in: | 2021 3rd International Conference on Robotics and Computer Vision (ICRCV) pp. 57 - 62 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
06.08.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the rapid development of science and technology, high-dimensional data emerge one after another. High-order tensors can be used to describe high-dimensional data structure, which can retain the hidden structure of data, but cannot obtain the deep features. Therefore, it is very important to establish a deep high order tensor model. In this paper, we propose a deep high-order tensor convolutional sparse coding model, which can automatically learn the deep convolutional kernel. Based on the learned deep convolutional kernel, a two-layer deep dictionary learning model is established. Then, the sparse representation coefficients are respectively solved, and a new weighted matching cost method is constructed, which combines shallow and deep features. The experimental results on the Middlebury 2014 dataset show that the proposed deep high-order tensor convolutional sparse coding is effective for stereo matching. |
|---|---|
| AbstractList | With the rapid development of science and technology, high-dimensional data emerge one after another. High-order tensors can be used to describe high-dimensional data structure, which can retain the hidden structure of data, but cannot obtain the deep features. Therefore, it is very important to establish a deep high order tensor model. In this paper, we propose a deep high-order tensor convolutional sparse coding model, which can automatically learn the deep convolutional kernel. Based on the learned deep convolutional kernel, a two-layer deep dictionary learning model is established. Then, the sparse representation coefficients are respectively solved, and a new weighted matching cost method is constructed, which combines shallow and deep features. The experimental results on the Middlebury 2014 dataset show that the proposed deep high-order tensor convolutional sparse coding is effective for stereo matching. |
| Author | Cui, Wenjing Cheng, Chunbo |
| Author_xml | – sequence: 1 givenname: Wenjing surname: Cui fullname: Cui, Wenjing email: wjcui@hbpu.edu.cn organization: Hubei Polytechnic University,School of Mathematics and Physics,Huangshi,China – sequence: 2 givenname: Chunbo surname: Cheng fullname: Cheng, Chunbo email: bccheng@hbpu.edu.cn organization: Huazhong University of Science and Technology,School of Mathematics and Statistics,Wuhan,China |
| BookMark | eNotj99KwzAchSPohZt7Ai_MC7TmT5Mml1KdG0yEbYp3I01_2QI1KWkVfPsF3NUH3zkcODN0HWIAhB4oKSkl-nHdbJtPwbSSJSOMllpUUkt-hWZUSlFxydTXLVo-Awx45Y-nIqYOEt5DGGPCTQy_sf-ZfAymx7vBpBGy7Hw4Ypfz3QQJIn4zkz1ld4dunOlHWFw4Rx_Ll32zKjbvr-vmaVN4StVUUKtr1hKolK6c5kxLwk1dW5VJrJOVpRqEbeu6EwIUtM51whGQuSuZIHyO7v93PQAchuS_Tfo7XK7xM2F_SOk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICRCV52986.2021.9546963 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 166543628X 9781665436281 |
| EndPage | 62 |
| ExternalDocumentID | 9546963 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i118t-1c972b0e4894f9329603a77c86030cf64c19e5cb77d55e8ebffd5f0e693262503 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:36 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-1c972b0e4894f9329603a77c86030cf64c19e5cb77d55e8ebffd5f0e693262503 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9546963 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Aug.-6 |
| PublicationDateYYYYMMDD | 2021-08-06 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-Aug.-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 3rd International Conference on Robotics and Computer Vision (ICRCV) |
| PublicationTitleAbbrev | ICRCV |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7661899 |
| Snippet | With the rapid development of science and technology, high-dimensional data emerge one after another. High-order tensors can be used to describe... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 57 |
| SubjectTerms | Computer vision Convolutional codes convolutional sparse coding Costs Data structures Deep learning dictionary learning Encoding high-order tensor stereo matching Tensors |
| Title | Deep High-order Tensor Convolutional Sparse Coding for Stereo Matching |
| URI | https://ieeexplore.ieee.org/document/9546963 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8MgFJa27LDTNtqx33jYcbZJ1KjnbmU7rJS1G72VqC9QGE3p0v79e9rQMdhlJ4NoxBeJ3_f8no-Qe-mdc0YUzAU_mLDOMmu0YNIKn-CC9g50TDahxmM9n5tJizwcYmEAIIrPoB8e41m-r9w2uMoGRiKZy3mbtJXK97FajWQrTczgZfg2_JCZ0UF5kKX9pvWvtClx1xid_G-8U9L7Cb-jk8PGckZasOqS0SPAmgZZBovXZdIZEtBqQ7HPrlk-xSedrpGoAlaGnhQBKZ2i4aCir_jLDc6mHnkfPc2Gz6xJgsCWiP1rljqjMpuA0EaUCLaQcfBCKaexTFyZC5cakM4q5aUEDbYsvSwTyAMwQ3zDz0lnVa3gglCe8pIDF0Li64QvCoNcwZsM55jpUvFL0g02WKz391wsmulf_V19TY6DmaMYLr8hnXqzhVty5Hb18mtzFz_ON9MokWg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNGTGjD-tgePFra13dozSiACIYKGG9nat8TEMILA3-_rXDAmXjx1ado1fWvW73v9Xh_AvXLWWiNTbr0fTGY245nRkqtMuoAWtLOoy2QTyWikZzMzrsHDLhYGEUvxGbb8Y3mW7wq78a6ytlFE5mKxB_s-c1YVrVWJtsLAtPudl86bioz22oMobFXtfyVOKfeN7vH_RjyB5k8AHhvvtpZTqOGiAd1HxCXzwgxeXpjJpkRBixWjPttqAaUfbLIkqopU6XsygqRsQqbDgg3pp-vdTU147T5NOz1epUHg74T-1zy0JomyAKU2Mie4RZxDpEliNZWBzWNpQ4PKZknilEKNWZ47lQcYe2hGCEecQX1RLPAcmAhFLlBIqeh10qWpIbbgTERzjHSeiAtoeBvMl983Xcyr6V_-XX0Hh73pcDAf9EfPV3DkTV5K4-JrqK9XG7yBA7tdv3-ubssP9QWZEJSx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+3rd+International+Conference+on+Robotics+and+Computer+Vision+%28ICRCV%29&rft.atitle=Deep+High-order+Tensor+Convolutional+Sparse+Coding+for+Stereo+Matching&rft.au=Cui%2C+Wenjing&rft.au=Cheng%2C+Chunbo&rft.date=2021-08-06&rft.pub=IEEE&rft.spage=57&rft.epage=62&rft_id=info:doi/10.1109%2FICRCV52986.2021.9546963&rft.externalDocID=9546963 |