Improving the Efficiency of Automated Latent Fingerprint Identification Using Stack of Convolutional Auto-encoder
In this paper, a method for improving the efficiency of latent fingerprint segmentation and detection system is presented. Structural detection and precise segmentation of fingerprints otherwise not visible to the naked eye (called latents), provide the basis for automatic identification of latent f...
Uloženo v:
| Vydáno v: | International Conference on Parallel, Distributed and Grid Computing (PDGC ...) s. 191 - 196 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
06.11.2020
|
| Témata: | |
| ISSN: | 2573-3079 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, a method for improving the efficiency of latent fingerprint segmentation and detection system is presented. Structural detection and precise segmentation of fingerprints otherwise not visible to the naked eye (called latents), provide the basis for automatic identification of latent fingerprints. The method is based on the assumption, that including detection of relevant structure of interest from latent fingerprint image into an effective segmentation model pipeline improves the effectiveness of the model and efficiency of the automated segmentation. The approach discards detections of poor-quality due to noise, inadequate data, misplaced structures of interests from multiple instances of fingermarks in the image etc. A collaborative detector-segmentation approach is proposed which establishes reproducibility and repeatability of the model, consequently increasing the efficiency of the frame of work. The results are obtained on IIIT -DCLF database. Performing saliency-based detection using color based visual distortion reducing the subsequent information processing cost through a stack of the convolutional autoencoder. The results obtained signify significant improvement over published results. |
|---|---|
| AbstractList | In this paper, a method for improving the efficiency of latent fingerprint segmentation and detection system is presented. Structural detection and precise segmentation of fingerprints otherwise not visible to the naked eye (called latents), provide the basis for automatic identification of latent fingerprints. The method is based on the assumption, that including detection of relevant structure of interest from latent fingerprint image into an effective segmentation model pipeline improves the effectiveness of the model and efficiency of the automated segmentation. The approach discards detections of poor-quality due to noise, inadequate data, misplaced structures of interests from multiple instances of fingermarks in the image etc. A collaborative detector-segmentation approach is proposed which establishes reproducibility and repeatability of the model, consequently increasing the efficiency of the frame of work. The results are obtained on IIIT -DCLF database. Performing saliency-based detection using color based visual distortion reducing the subsequent information processing cost through a stack of the convolutional autoencoder. The results obtained signify significant improvement over published results. |
| Author | Ravulakollu, Kiran Kumar Chhabra, Megha Shukla, Manoj Kumar |
| Author_xml | – sequence: 1 givenname: Megha surname: Chhabra fullname: Chhabra, Megha email: lMegha.chhbr@gmail.com organization: AIIT, Amity University,Noida,UP,India – sequence: 2 givenname: Manoj Kumar surname: Shukla fullname: Shukla, Manoj Kumar email: mkshukla@amity.edu organization: ASET, Amity University,Noida,UP,India – sequence: 3 givenname: Kiran Kumar surname: Ravulakollu fullname: Ravulakollu, Kiran Kumar email: linekkravulakollu@ddn.upes.ac.in organization: School of Computer Science, University of Petroleum and Energy Studies Bidoli,Dehradun,India |
| BookMark | eNotkN1OwjAUx6vRRESewMTsBYZtz9rSSzIBSZZoolyTbj3TKrS4FRLe3qJcnO__-eXk3JIrHzwS8sDomDGqH1-fFqWgwGDMKadjDUyoQl6QkVYTpngyBlxekgEXCnKgSt-QUd9_UUqBUyikHpCf5XbXhYPzH1n8xGzWtq5x6JtjFtpsuo9hayLarErex2yedNjtOpfypU0dl-QmuuCzVX9ivEXTfJ9Wy-APYbM_jczmD5QnarDY3ZHr1mx6HJ3jkKzms_fyOa9eFstyWuWOsUnMmWEoDee6aKG2FKTCosBa1BO0itWNFjWXFpRWTGhqBUUtuVYt2FRILWFI7v-5DhHX6eat6Y7r85PgF6scXuA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PDGC50313.2020.9315746 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781728171326 1728171326 |
| EISSN | 2573-3079 |
| EndPage | 196 |
| ExternalDocumentID | 9315746 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i118t-1a1e6a2294f3bd0367e44eb5b8ed71bc95b26d37971590d50e96297f3d0d56963 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 06:03:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i118t-1a1e6a2294f3bd0367e44eb5b8ed71bc95b26d37971590d50e96297f3d0d56963 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9315746 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov.-6 |
| PublicationDateYYYYMMDD | 2020-11-06 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Parallel, Distributed and Grid Computing (PDGC ...) |
| PublicationTitleAbbrev | PDGC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203469 |
| Score | 1.7395754 |
| Snippet | In this paper, a method for improving the efficiency of latent fingerprint segmentation and detection system is presented. Structural detection and precise... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 191 |
| SubjectTerms | Autoencoder Convolutional neural network Classification Computational modeling Feature extraction Fingerprint recognition Image color analysis Image processing Image segmentation Latent fingerprint Load modeling Segmentation Training |
| Title | Improving the Efficiency of Automated Latent Fingerprint Identification Using Stack of Convolutional Auto-encoder |
| URI | https://ieeexplore.ieee.org/document/9315746 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioGpQIv4lgdG3MZ2bMcjKi0MVdUBpG6VY1-kCpRASfv7sd1QhMTCEiWRnER3se7u2e8dQrdGsoymAghliSJpLnNiFLUk08ZSEKkv5qK6_lTNZtlioectdLfnwgBA3HwGg3Aa1_JdZTcBKhtqToVKZRu1lZI7rtYeT-Es4b7Ua0jANNHD-cPjSARpQl8FsmTQDP7VRSUGkUn3f68_Qv0fNh6e7-PMMWpBeYK63-0YcDM7e-hjDxBgn9XhcRSHCMxKXBX4flNXPjkFh6f-WNZ4EvG8AOvVeMfWLRr4DsdtBNinofY1DPWfsW1-UPMWH0SC-qWDdR-9TMbPoyfSdFQgK19I1IQaCtIwptOC584HLwWpd4fIM3CK5laLnEnHlVY-y0mcSEBLplXBnb-Qfq6eok5ZlXCGsDUZJJzrDHSRQpIbro23P0ut1ZkT7Bz1ggWX7zvRjGVjvIu_b1-iw-CkSPKTV6hTrzdwjQ7stl59rm-ip78AOourKg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21CnqqWsVvc_DotvncbI5SrRVr6aFCbyWbzIIordZtf79JulYEL16W3YUsYWbDzLzkvUHoyqQso0JCQhlRicjTPDGK2iTTxlKQwhdzUV2_rwaDbDzWwxq6XnNhACAePoNWuI17-W5mFwEqa2tOpRLpBtqUQjCyYmutERXOCPfFXkUDpkS3h7f3HRnECX0dyEirGv6rj0oMI93G_yawiw5--Hh4uI40e6gG033U-G7IgKv12UQfa4gA-7wO30V5iMCtxLMC3yzKmU9PweG-v05L3I2IXgD2Srzi6xYVgIfjQQLsE1H7Gob6aSyrX9S8xQ8lQf_SwfwAPXfvRp1eUvVUSF58KVEm1FBIDWNaFDx3PnwpEN4hMs_AKZpbLXOWOq608nkOcZKATplWBXf-IfWr9RDVp7MpHCFsTQaEc52BLgSQ3HBtvP2ZsFZnTrJj1AwWnLyvZDMmlfFO_n59ibZ7o6f-pP8weDxFO8FhkfKXnqF6OV_AOdqyy_Llc34Rvf4FTPCucQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Parallel%2C+Distributed+and+Grid+Computing+%28PDGC+...%29&rft.atitle=Improving+the+Efficiency+of+Automated+Latent+Fingerprint+Identification+Using+Stack+of+Convolutional+Auto-encoder&rft.au=Chhabra%2C+Megha&rft.au=Shukla%2C+Manoj+Kumar&rft.au=Ravulakollu%2C+Kiran+Kumar&rft.date=2020-11-06&rft.pub=IEEE&rft.eissn=2573-3079&rft.spage=191&rft.epage=196&rft_id=info:doi/10.1109%2FPDGC50313.2020.9315746&rft.externalDocID=9315746 |