Adaptive Multi-scale Quantum Harmonic Oscillator Algorithm Based on Evolutionary Strategy
This paper proposes a novel adaptive multi-scale quantum harmonic oscillator algorithm based on evolutionary strategies (AMQHOA-ES) for global numerical optimization. Since the original Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA) utilizes a fixed contraction factor to narrow the search...
Saved in:
| Published in: | 2020 IEEE Congress on Evolutionary Computation (CEC) pp. 1 - 8 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.07.2020
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper proposes a novel adaptive multi-scale quantum harmonic oscillator algorithm based on evolutionary strategies (AMQHOA-ES) for global numerical optimization. Since the original Multi-scale Quantum Harmonic Oscillator Algorithm (MQHOA) utilizes a fixed contraction factor to narrow the search scale, the searching step decreases too fast at the later stage of the evolution and is more likely to suffer premature convergence and stagnation. To improve the convergence performance, an adaptive attenuation mechanism of scaling is proposed to dynamically adjust the exploration and exploitation properties. Evolutionary strategies such as selection, crossover and DE/rand/1 mutation are implemented in the proposed algorithm to enhance the exploration and exploitation abilities. Experimental results evaluated on several unimodal and multimodal benchmark functions indicate the significant improvement of the proposed algorithm to the original MQHOA. Meanwhile, the experimental results compared with several state-of-the-art optimizers show the superiority or competitiveness of the proposed algorithm. |
|---|---|
| DOI: | 10.1109/CEC48606.2020.9185738 |